Ali SA, Al-Muallem HA, Mazumder MAJ. Stimuli-Responsive Macromolecular Architecture by Butler Cyclopolymerizations: Synthesis and Applications.
CHEM REC 2023;
23:e202200235. [PMID:
36461736 DOI:
10.1002/tcr.202200235]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 12/04/2022]
Abstract
This article reviews the synthesis of polyzwitterions (PZs) (poly-carboxybetaines, -phosphonobetaines, and -sulfobetaines) having multiple pH-responsive centers. The synthesis follows the Butler cyclopolymerization protocol involving a multitude of diallylammonium salts and their copolymerization with SO2 and maleic acid. The PZs have been transformed into cationic-, anionic-polyelectrolytes, and polyampholytes under the influence of pH. Particular attention is given to the application of these polymers as antiscalants, mild steel corrosion inhibitors, components in constructing Aqueous Two-Phase Systems (ATPSs), and membrane modifiers. The ATPSs could be used to separate various biomolecules, including proteins. Many amphiphilic polymers incorporating a few mol % hydrophobic monomers have shown enhanced viscosities and could be suitable for applications in oil fields. The progress of applying Butler cyclopolymerization in reversible addition-fragmentation chain transfer (RAFT) chemistry has been discussed. Future works are expected to focus on RAFT cyclopolymerization to construct block copolymers.
Collapse