1
|
Anwajler B, Witek-Krowiak A. Three-Dimensional Printing of Multifunctional Composites: Fabrication, Applications, and Biodegradability Assessment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7531. [PMID: 38138674 PMCID: PMC10744785 DOI: 10.3390/ma16247531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Additive manufacturing, with its wide range of printable materials, and ability to minimize material usage, reduce labor costs, and minimize waste, has sparked a growing enthusiasm among researchers for the production of advanced multifunctional composites. This review evaluates recent reports on polymer composites used in 3D printing, and their printing techniques, with special emphasis on composites containing different types of additives (inorganic and biomass-derived) that support the structure of the prints. Possible applications for additive 3D printing have also been identified. The biodegradation potential of polymeric biocomposites was analyzed and possible pathways for testing in different environments (aqueous, soil, and compost) were identified, including different methods for evaluating the degree of degradation of samples. Guidelines for future research to ensure environmental safety were also identified.
Collapse
Affiliation(s)
- Beata Anwajler
- Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| |
Collapse
|
2
|
Bobnar M, Derets N, Umerova S, Domenici V, Novak N, Lavrič M, Cordoyiannis G, Zalar B, Rešetič A. Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material. Nat Commun 2023; 14:764. [PMID: 36765062 PMCID: PMC9918464 DOI: 10.1038/s41467-023-36426-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The current development of soft shape-memory materials often results in materials that are typically limited to the synthesis of thin-walled specimens and usually rely on complex, low-yield manufacturing techniques to fabricate macro-sized, solid three-dimensional objects. However, such geometrical limitations and slow production rates can significantly hinder their practical implementation. In this work, we demonstrate a shape-memory composite material that can be effortlessly molded into arbitrary shapes or sizes. The composite material is made from main-chain liquid crystal elastomer (MC-LCE) microparticles dispersed in a silicone polymer matrix. Shape-programmability is achieved via low-temperature induced glassiness and hardening of MC-LCE inclusions, which effectively freezes-in any mechanically instilled deformations. Once thermally reset, the composite returns to its initial shape and can be shape-programmed again. Magnetically aligning MC-LCE microparticles prior to curing allows the shape-programmed artefacts to be additionally thermomechanically functionalized. Therefore, our material enables efficient morphing among the virgin, thermally-programmed, and thermomechanically-controlled shapes.
Collapse
Affiliation(s)
- Matej Bobnar
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Nikita Derets
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia ,grid.423485.c0000 0004 0548 8017On leave from: Ioffe Institute, Division of Physics of Dielectrics and Semiconductors, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
| | - Saide Umerova
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Valentina Domenici
- grid.5395.a0000 0004 1757 3729Dipartimento di Chimica e Chimica Industriale, Università degli studi di Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Nikola Novak
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Marta Lavrič
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - George Cordoyiannis
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boštjan Zalar
- grid.11375.310000 0001 0706 0012Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000 Ljubljana, Slovenia ,grid.445211.7Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Abstract
The fabrication of robots and their embedded systems is challenging due to the complexity of the interacting components. The integration of additive manufacturing (AM) to robotics has made advancements in robotics manufacturing through sophisticated and state-of-the-art AM technologies and materials. With the emergence of 3D printing, 3D printing materials are also being considered and engineered for specific applications. This study reviews different 3D printing materials for 3D printing embedded robotics. Materials such as polyethylene glycol diacrylate (PEGDA), acrylonitrile butadiene styrene (ABS), flexible photopolymers, silicone, and elastomer-based materials were found to be the most used 3D printing materials due to their suitability for robotic applications. This review paper revealed that the key areas requiring more research are material formulations for improved mechanical properties, cost, and the inclusion of materials for specific applications. Future perspectives are also provided.
Collapse
|
5
|
|
6
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: https:/doi.org/10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
7
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: 10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
8
|
Regis JE, Renteria A, Hall SE, Hassan MS, Marquez C, Lin Y. Recent Trends and Innovation in Additive Manufacturing of Soft Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4521. [PMID: 34443043 PMCID: PMC8399226 DOI: 10.3390/ma14164521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022]
Abstract
The growing demand for wearable devices, soft robotics, and tissue engineering in recent years has led to an increased effort in the field of soft materials. With the advent of personalized devices, the one-shape-fits-all manufacturing methods may soon no longer be the standard for the rapidly increasing market of soft devices. Recent findings have pushed technology and materials in the area of additive manufacturing (AM) as an alternative fabrication method for soft functional devices, taking geometrical designs and functionality to greater heights. For this reason, this review aims to highlights recent development and advances in AM processable soft materials with self-healing, shape memory, electronic, chromic or any combination of these functional properties. Furthermore, the influence of AM on the mechanical and physical properties on the functionality of these materials is expanded upon. Additionally, advances in soft devices in the fields of soft robotics, biomaterials, sensors, energy harvesters, and optoelectronics are discussed. Lastly, current challenges in AM for soft functional materials and future trends are discussed.
Collapse
Affiliation(s)
- Jaime Eduardo Regis
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anabel Renteria
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel Ernesto Hall
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Sahid Hassan
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cory Marquez
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Yirong Lin
- Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.); (S.E.H.); (M.S.H.); (C.M.); (Y.L.)
- W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Affiliation(s)
- Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM) Bielefeld Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics Bielefeld University of Applied Sciences Bielefeld Germany
| |
Collapse
|
10
|
Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Challenges in Design, Preparation, and Characterization. METALS 2021. [DOI: 10.3390/met11030415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid progress in material science and nanotechnology has led to the development of the shape memory alloys (SMA) and the shape memory polymers (SMP) based functional multilayered structures that, due to their capability to achieve the properties not feasible by most natural materials, have attracted a significant attention from the scientific community. These shape memory materials can sustain large deformations, which can be recovered once the appropriate value of an external stimulus is applied. Moreover, the SMAs and SMPs can be reprogrammed to meet several desired functional properties. As a result, SMAs and SMPs multilayered structures benefit from the unprecedented physical and material properties such as the shape memory effect, superelasticity, large displacement actuation, changeable mechanical properties, and the high energy density. They hold promises in the design of advanced functional micro- and nano-electro-mechanical systems (MEMS/NEMS). In this review, we discuss the recent understanding and progress in the fields of the SMAs and SMPs. Particular attention will be given to the existing challenges, critical issues, limitations, and achievements in the preparation and characterization of the SMPs and NiTi-based SMAs thin films, and their heterostructures for MEMS/NEMS applications including both experimental and computational approaches. Examples of the recent MEMS/NEMS devices utilizing the unique properties of SMAs and SMPs such as micropumps, microsensors or tunable metamaterial resonators are highlighted. In addition, we also introduce the prospective future research directions in the fields of SMAs and SMPs for the nanotechnology applications.
Collapse
|
11
|
Photo-thermal converting polyaniline/ionic liquid inks for screen printing highly-sensitive flexible uncontacted thermal sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|