1
|
Todorova SE, Rusew RI, Petkova ZS, Shivachev BL, Kurteva VB. Novel Thiourea Ligands-Synthesis, Characterization and Preliminary Study on Their Coordination Abilities. Molecules 2024; 29:4906. [PMID: 39459274 PMCID: PMC11510064 DOI: 10.3390/molecules29204906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Two series of polydentate N,O,S-ligands containing thiourea fragments attached to a p-cresol scaffold, unsymmetrical mono-acylated bis-amines and symmetrical bis-thioureas, are obtained by common experiments. It is observed that the reaction output is strongly dependent on both bis-amine and thiocarbamic chloride substituents. The products are characterized by 1D and 2D NMR spectra in solution and by single crystal XRD. A preliminary study on the coordination abilities of selected products is performed by ITC at around neutral media.
Collapse
Affiliation(s)
- Stanislava E. Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria (Z.S.P.)
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Zhanina S. Petkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria (Z.S.P.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria (Z.S.P.)
| |
Collapse
|
2
|
Alagi P, Nikam SB, Gopalsamy K, Bashihab L, Szekely G, Hadjichristidis N. Controlled Ring-Opening Polymerization of Methyl Glycolide with Bifunctional Organocatalyst. Angew Chem Int Ed Engl 2024:e202411809. [PMID: 39259566 DOI: 10.1002/anie.202411809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
A bifunctional thiourea-amine-based organocatalyst (Takemoto's catalyst), employing a metal-free approach, is presented for the regioselective ring-opening polymerization (ROP) of optically active (D and L) methyl glycolide (MG). In this study, a chiral version of Takemoto's catalyst efficiently promotes the ROP of MG at room temperature, yielding poly(lactic-co-glycolic acids) (PLGAs) with predicted molecular weights and narrow polydispersity indices (PDI≤1.2). These PLGAs exhibit highly alternating structures without transesterification, as confirmed by 1H NMR, SEC, and MALDI-TOF analyses. Additionally, various macromolecular architectures, including linear and star-shaped PLGAs, were successfully synthesized using the corresponding multi-functional alcohol initiators while maintaining the same alternating structures and regioselectivity with PLGA obtained from benzyl alcohol as initiator. Computational studies were conducted to elucidate the mechanism of alternating PLGA formation, revealing two key transition states (TSs): TS-1, which implicates the nucleophilic attack of the hydroxyl group of the initiator or propagating chain on the carbonyl carbon of MG, and TS-2, which involves the subsequent ring-opening of the cyclic ester. The results indicate that ring-opening occurs at both the glycolyl and lactyl sites, with a preference for the glycolyl site, as supported by experimental results. The resulting atactic PLGAs are amorphous, rendering them suitable for drug delivery applications.
Collapse
Affiliation(s)
- Prakash Alagi
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Shrikant B Nikam
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Karuppasamy Gopalsamy
- Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lujain Bashihab
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
3
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
4
|
Ring opening polymerization of lactide promoted by Zinc and Magnesium complexes with a N-heterocyclic carbene-phenoxy-imine hybrid non-innocent ligand. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Recchimurzo A, Balzano F, Uccello Barretta G, Gherardi L. Bis-Thiourea Chiral Sensor for the NMR Enantiodiscrimination of N-Acetyl and N-Trifluoroacetyl Amino Acid Derivatives. J Org Chem 2022; 87:11968-11978. [PMID: 36062357 PMCID: PMC9486950 DOI: 10.1021/acs.joc.2c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A C2-symmetrical bis-thiourea chiral solvating agent
(CSA), TFTDA, for NMR spectroscopy has been obtained
by reacting
(1R,2R)-1,2-bis(2-hydroxyphenyl)ethylenediamine
and 3,5-bis(trifluoromethyl)phenyl isothiocyanate. TFTDA shows remarkable propensity to enantiodiscriminate N-trifluoroacetyl (N-TFA) and N-acetyl
(N-Ac) derivatives of amino acids with free carboxyl
functions, with the co-presence of 1,4-diazabicyclo[2.2.2]octane (DABCO)
as the third achiral additive, which is needed for substrate solubilization. TFTDA shows enhanced enantiodiscriminating efficiency in comparison
with the corresponding monomeric counterpart, TFTMA,
pointing out cooperativity between its two symmetrical entities. A
wide range of amino acid derivatives have been efficiently enantiodiscriminated
in CDCl3, with high enantioresolution quotients, which
guarantee high quality in applications devoted to the quantification
of enantiomers. High enantiodiscriminating efficiency is maintained
also in diluted 5 mM conditions or in the presence of sub-stoichiometric
amounts of CSA (0.3 equiv). The role of phenolic hydroxyls in the
DABCO-mediated interaction mechanism between TFTDA and
the two enantiomeric substrates has been pointed out by means of diffusion-ordered
spectroscopy (DOSY) and rotating frame Overhauser effect spectroscopy
(ROESY) experiments. A conformational model for both the CSA and its
diastereomeric solvates formed with the two enantiomers of N-acetyl leucine has also been conceived on the basis of
ROE data in order to give a chiral discrimination rationale.
Collapse
Affiliation(s)
- Alessandra Recchimurzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Gloria Uccello Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Luca Gherardi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
6
|
Jadrich CN, Pane VE, Lin B, Jones GO, Hedrick JL, Park NH, Waymouth RM. A Cation-Dependent Dual Activation Motif for Anionic Ring-Opening Polymerization of Cyclic Esters. J Am Chem Soc 2022; 144:8439-8443. [PMID: 35504294 DOI: 10.1021/jacs.2c01436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new organocatalyst for the ring-opening polymerization of lactones has been identified. Under the tested conditions, the anions of 2,2'-bisindole promote fast, living polymerizations (as short as 10 ms) which are selective for chain elongation over transesterification (Đ ≤ 1.1). While structurally related to (thio)urea anion catalysts, anions of 2,2'-bisindole activate the monomer via the counterion rather than through hydrogen bonding. This new activation motif enables modulation of the polymerization rate by 2 orders of magnitude by changing the counterion.
Collapse
Affiliation(s)
- Caleb N Jadrich
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Vince E Pane
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Binhong Lin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Gavin O Jones
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
7
|
Xu J, Wang X, Liu J, Feng X, Gnanou Y, Hadjichristidis N. Ionic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Crystal structure, DFT-study and NLO properties of the novel copper(I) nitrate π,σ-coordination compound based on 1-allyl-3-norbornan-thiourea. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Pappuru S, Ramkumar V, Chakraborty D. Benzoxazole phenoxide ligand supported group
IV
catalysts and their application for the ring‐opening polymerization of
rac
‐lactide and
ε
‐caprolactone. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sreenath Pappuru
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | | | | |
Collapse
|
10
|
Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D. A chiral thiourea and a phosphazene for fast and stereoselective organocatalytic ring-opening-polymerization of racemic lactide. Chem Commun (Camb) 2021; 57:3777-3780. [PMID: 33734228 DOI: 10.1039/d0cc08022e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Control of stereoregularity is inherent to precision polymerization chemistry for the development of functional materials. A prototypal example of this strategy is the ring-opening polymerization (ROP) of racemic lactide (rac-LA), a bio-sourced monomer. Despite significant advances in organocatalysis, stereoselective ROP of rac-LA employing chiral organocatalysts remains unexplored. Here we tackle that challenge by resorting to Takemoto's catalyst, a chiral aminothiourea, in the presence of a phosphazene base. This chiral binary organocatalytic system allows for fast, chemo- and stereoselective ROP of rac-LA at room temperature, yielding highly isotactic, semi-crystalline and metal-free polylactide, with a melting temperature as high as 187 °C.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux, INP-ENSCBP, 16 av. Pey Berland, PESSAC cedex 33607, France.
| | | | | | | | | |
Collapse
|
11
|
Zhou L, Wang Z, Xu G, Lv C, Wang Q. Structure and activity relationship studies of N-heterocyclic olefin and thiourea/urea catalytic systems: application in ring-opening polymerization of lactones. Polym Chem 2021. [DOI: 10.1039/d0py01747g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure–activity relationship studies of N-heterocyclic olefin and thiourea/urea catalytic systems were performed and applied to ROP of lactones.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Zhenyu Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Chengdong Lv
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
12
|
Wang Z, Mu Y. Chiral salenCo( iii) complexes with bulky substituents as catalysts for stereoselective alternating copolymerization of racemic propylene oxide with carbon dioxide and succinic anhydride. Polym Chem 2021. [DOI: 10.1039/d0py01562h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stereoregular poly(propylene carbonate)s and poly(propylene succinate-block-carbonate)s were synthesized with new chiral salenCo(iii) catalysts carrying bulky substituents.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory for Supramolecular Structure and Materials
- School of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying Mu
- State Key Laboratory for Supramolecular Structure and Materials
- School of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
13
|
|
14
|
Thiourea–Tertiary Amine Promoted Cascade Catalysis: A Tool for Complexity Generation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Ji C, Jie S, Braunstein P, Li BG. Fast and controlled ring-opening polymerization of δ-valerolactone catalyzed by benzoheterocyclic urea/MTBD catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
New benzoheterocyclic urea/MTBD catalysts are highly efficient and controllable in the ring-opening polymerization of δ-valerolactone under solvent-free conditions or in solution.
Collapse
Affiliation(s)
- Chenlin Ji
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Suyun Jie
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination
- CNRS, CHIMIE UMR 7177
- Université de Strasbourg
- 67081 Strasbourg Cedex
- France
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|