1
|
Echegaray N, Goksen G, Kumar M, Sharma R, Hassoun A, Lorenzo JM, Dar BN. A critical review on protein-based smart packaging systems: Understanding the development, characteristics, innovations, and potential applications. Crit Rev Food Sci Nutr 2023; 64:8633-8648. [PMID: 37114905 DOI: 10.1080/10408398.2023.2202256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The use of packaging in the food industry is essential to protect food and improve its shelf life. However, traditional packaging, based on petroleum derivatives, presents some problems because it is non-biodegradable and is obtained from nonrenewable sources. In contrast, protein-based smart packaging is presented as an environmentally friendly strategy that also permits obtaining packaging with excellent characteristics for the formation of smart films and coatings. This review aims to summarize recent developments in smart packaging, focusing on edible films/coatings materials, originating from animal and plant protein sources. Various characteristics like mechanical, barrier, functional, sensory, and sustainability of packaging systems are discussed, and the processes used for their development are also described. Moreover, relevant examples of the application of these smart packaging technologies in muscle foods and some innovations in this area are presented. Protein-based films and coatings from plant and animal origins have great potential to enhance food safety and quality, and reduce environmental issues (e.g., plastic pollution and food waste). Some characteristics of the packages can be improved by incorporating polysaccharides, lipids, and other components as antioxidants, antimicrobials, and nanoparticles in protein-based composites. Promising results have been shown in many muscle foods, such as meat, fish, and other seafood. These innovative smart packaging systems are characterized by their renewable and biodegradable nature, and sustainability, among other features that go beyond typical protection barriers (namely, active, functional, and intelligent features). Nonetheless, the utilization of protein-based responsive films and coatings at industrial level still need optimization to be technologically and economically valid and viable.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rajan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda, Galicia n◦ 4, Parque Tecnológico de Galicia, Ourense, Spain
- Facultad de Ciencias de Ourense, University of Vigo, Area de Tecnología de los Alimentos, Ourense, Spain
| | - B N Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| |
Collapse
|
2
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Chen P, Bian L, Hu X. Synergic Fabrication of Gold Nanoparticles Embedded Dextran/ Silk Sericin Nanomaterials for the Treatment and Care of Wound Healing. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02131-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Wong SK, Supramaniam J, Wong TW, Soottitantawat A, Ruktanonchai UR, Tey BT, Tang SY. Synthesis of bio-inspired cellulose nanocrystals-soy protein isolate nanoconjugate for stabilization of oil-in-water Pickering emulsions. Carbohydr Res 2021; 504:108336. [PMID: 33964507 DOI: 10.1016/j.carres.2021.108336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.
Collapse
Affiliation(s)
- See Kiat Wong
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Janarthanan Supramaniam
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, 42300, Puncak Alam, Selangor, Malaysia
| | - Apinan Soottitantawat
- Center of Excellence in Particle and Materials Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | | | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia; Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|