1
|
Qiu YL, Li Y, Zhang GL, Hao H, Hou HM, Bi J. Effects of quaternization sites and crossing methods on the slow-release and antibacterial effects of hydroxypropyltrimethyl ammonium chloride chitosan/dialdehyde chitosan-based film. Int J Biol Macromol 2024; 278:134683. [PMID: 39147345 DOI: 10.1016/j.ijbiomac.2024.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.
Collapse
Affiliation(s)
- Yu-Long Qiu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yixi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Gong-Liang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong-Man Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Al-Tayyem BH, Sweileh BA. Synthesis and characterization of novel bio-based polyesters and poly(ester amide)s based on isosorbide and symmetrical cyclic anhydrides. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Weinland DH, van der Maas K, Wang Y, Bottega Pergher B, van Putten RJ, Wang B, Gruter GJM. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat Commun 2022; 13:7370. [PMID: 36450717 PMCID: PMC9712608 DOI: 10.1038/s41467-022-34840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Shifting away from fossil- to biobased feedstocks is an important step towards a more sustainable materials sector. Isosorbide is a rigid, glucose-derived secondary diol, which has been shown to impart favourable material properties, but its low reactivity has hampered its use in polyester synthesis. Here we report a simple, yet innovative, synthesis strategy to overcome the inherently low reactivity of secondary diols in polyester synthesis. It enables the synthesis of fully biobased polyesters from secondary diols, such as poly(isosorbide succinate), with very high molecular weights (Mn up to 42.8 kg/mol). The addition of an aryl alcohol to diol and diacid monomers was found to lead to the in-situ formation of reactive aryl esters during esterification, which facilitated chain growth during polycondensation to obtain high molecular weight polyesters. This synthesis method is broadly applicable for aliphatic polyesters based on isosorbide and isomannide and could be an important step towards the more general commercial adaption of fully biobased, rigid polyesters.
Collapse
Affiliation(s)
- Daniel H. Weinland
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Kevin van der Maas
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Yue Wang
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Bruno Bottega Pergher
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands
| | - Robert-Jan van Putten
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Bing Wang
- grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- grid.7177.60000000084992262Van’t Hoff Institute of Molecular Sciences, University of Amsterdam, P.O. Box 94720, 1090GS Amsterdam, The Netherlands ,grid.432077.50000 0004 0646 5570Avantium Chemicals BV, Zekeringstraat 29, 1014BV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Döpping DA, Kern J, Rotter N, Llevot A, Theato P, Mutlu H. Synthesis and Characterization of Novel Isosorbide Based Polyester Derivatives Decorated with
α
‐Acyloxy Amides. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel A. Döpping
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Johann Kern
- Department of Otorhinolaryngology Head and Neck Surgery Medical Faculty Mannheim of University Heidelberg Theodor‐Kutzer‐Ufer 1–3 D‐68167 Mannheim Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery Medical Faculty Mannheim of University Heidelberg Theodor‐Kutzer‐Ufer 1–3 D‐68167 Mannheim Germany
| | - Audrey Llevot
- Bordeaux INP Laboratoire de Chimie des Polymères Organiques University of Bordeaux UMR 5629 ENSCBP 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| | - Patrick Theato
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr.18 D‐73131 Karlsruhe Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
5
|
Xie Y, Cheng G, Wu Z, Shi S, Zhao J, Jiang L, Jiang D, Yuan M, Wang Y, Yuan M. Preparation and Characterization of New Electrospun Poly(lactic acid) Nanofiber Antioxidative Active Packaging Films Containing MCM-41 Mesoporous Molecular Sieve Loaded with Phloridzin and Their Application in Strawberry Packaging. NANOMATERIALS 2022; 12:nano12071229. [PMID: 35407347 PMCID: PMC9000760 DOI: 10.3390/nano12071229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Health concerns about food safety have increased in recent years. In order to ensure the safety and increase the shelf-life of food, many methods have been used to slow down the oxidation rate of food fat. In order to solve this problem, a new type of antioxidant-active packaging has emerged. Poly(lactic acid) (PLA) films containing phloridzin adsorbed on to an MCM-41 mesoporous molecular sieve were prepared by electrostatic spinning, using PLA as a film-forming substrate, phloridzin as an antioxidant, and MCM-41 as the adsorption and controlled release carrier. The physical properties of the new films—including microscopic structure, water vapor transmission rate, and fresh-keeping effects, as well as the mechanical, thermal, antioxidant, and antibacterial properties—were studied. When the mass ratio of MCM-41 to phloridzin is 1:2, the nanofiber membrane achieves a 53.61% free-radical scavenging rate and better antibacterial performance (85.22%) due to the high content of phloridzin (30.54%). Additionally, when the mass ratio of the molecular sieve to phloridzin is 1:2 and 3:4 (with the best antibacterial performance of 89.30%), the films significantly delay lipid oxidation in the strawberry packaging, allowing the fresh-keeping time to be extended to up to 21 days before mildew appears. In this study, an MCM-41 mesoporous molecular sieve was used to load phloridzin for the first time. The packaging film with phloridzin, MCM-41, and poly(lactic acid) were used as the raw materials and electrospinning technology was used to prepare the packaging film with antioxidant activity. The packaging film was used for the first time in the packaging of strawberries.
Collapse
Affiliation(s)
- Yuan Xie
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhoushan Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Lin Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Dengbang Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Mingwei Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Yudan Wang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
- Correspondence: (Y.W.); (M.Y.)
| | - Minglong Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Correspondence: (Y.W.); (M.Y.)
| |
Collapse
|
6
|
Liu X, Desilles N, Jiang B, Chappey C, Lebrun L. High barrier semi-crystalline polyesters involving nature occurring pyridine structure towards sustainable food packaging. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Weinland DH, van Putten RJ, Gruter GJM. Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Lopresti F, Botta L, La Carrubba V, Di Pasquale L, Settanni L, Gaglio R. Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications. Int J Biol Macromol 2021; 193:117-126. [PMID: 34688672 DOI: 10.1016/j.ijbiomac.2021.10.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investigating the effect of the two compounds and their mixture on the thermal properties of MB. The release profile of CRV and Nis from the MB-based films was evaluated in water at 4 °C by UV-Vis measurements and it was fitted with a power-law model. The antibacterial activity of MB-based films was tested in vitro against Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Staphylococcus aureus. The combination of CRV and Nis strongly affected the properties of the MB-based films and ensured higher antibacterial activity if compared to MB/CRV and MB/Nis systems.
Collapse
Affiliation(s)
- Francesco Lopresti
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo La Carrubba
- Dipartimento di Ingegneria, Università degli Studi di Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Liliana Di Pasquale
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
9
|
Duan S, Yang X, Yang Z, Liu Y, Shi Q, Yang Z, Wu H, Han Y, Wang Y, Shen H, Huang Z, Dong XH, Zhang Z. A Versatile Synthetic Platform for Discrete Oligo- and Polyesters Based on Optimized Protective Groups Via Iterative Exponential Growth. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suhua Duan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Xiaojie Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Ze Yang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 510640 Guangzhou, China
| | - Yuxin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Qiunan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Haibing Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yue Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yongquan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Hang Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhihao Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 510640 Guangzhou, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123 Suzhou, China
| |
Collapse
|