1
|
Qiao T, Shi W, Zhuang H, Zhao G, Xin X, Li Y. Effects of substitution and conjugation on photophysical properties of ESIPT-based fluorophores with the core of 4-aminophthalimide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123802. [PMID: 38184881 DOI: 10.1016/j.saa.2023.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
4-Aminophthalimide is a highly fluorescent signaling unit with excellent photophysical properties and wide application foregrounds. Based on this, a range of theoretical investigations are conducted on the fluorescent probe (E)-5-((2-hydroxybenzylidene) amino) isoindoline-1, 3-dione (HID) with the core of 4-aminophthalimide using density functional theory (DFT) and time-containing density functional theory (TD-DFT) methods in this paper. The optimized configurations, vertical excitation and emission energies, electronic characteristics and excited-state intramolecular proton transfer (ESIPT) behaviors of the probe HID are discussed in detail. Furthermore, to enhance the luminescent properties of HID, five novel compounds have been designed based on the structure of HID by introducing amino, methoxy and naphthalene groups (-NH2, -OMe and C10H8). Our work thoroughly explores how the property and position of substituents and conjugation affect photophysical characteristics and ESIPT processes. We find that the ESIPT dynamics can be modulated by the substitution and conjugation effects. Specifically, the introduction of amino and methoxy groups at the ortho-position and the introduction of the naphthalene group promote the ESIPT behavior of HID1, whereas the introduction of amino and methoxy groups at the meta-position exhibits the contrary impact. Therefore, we boldly infer that the introduction of electron-donating groups in the ortho-position and the introduction of the conjugated group make the ESIPT process more effortless to occur, whereas the introduction of substituents with opposing natures in the meta-position makes the ESIPT process more difficult to occur. In addition, the ionization potentials (IP), electron affinities (EA) and reorganization energies (λh and λe) of molecules are calculated to assess their potential as luminescent materials. Our work not only reveals the luminescence and ESIPT mechanism of the probe HID1, but also proposes to modulate the ESIPT process through the substitution and conjugation effects. In particular, the designed molecules have better photoelectric properties as a result of their red-shifted absorption and fluorescence spectra, smaller energy gaps, larger transferred charges and greater charge transferred distances, which offers some valuable ideas for the experimental development of more efficient organic luminescent materials with ESIPT properties.
Collapse
Affiliation(s)
- Tiantian Qiao
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Wei Shi
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Hongbin Zhuang
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Guijie Zhao
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Xin Xin
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
2
|
Fazekas E, Lowy PA, Abdul Rahman M, Lykkeberg A, Zhou Y, Chambenahalli R, Garden JA. Main group metal polymerisation catalysts. Chem Soc Rev 2022; 51:8793-8814. [PMID: 36214205 DOI: 10.1039/d2cs00048b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
With sustainability at the forefront of current polymerisation research, the typically earth-abundant, inexpensive and low-toxicity main group metals are attractive candidates for catalysis. Main group metals have been exploited in a broad range of polymerisations, ranging from classical alkene polymerisation to the synthesis of new bio-derived and degradable polyesters and polycarbonates via ring-opening polymerisation and ring-opening copolymerisation. This tutorial review highlights efficient polymerisation catalysts based on Group 1, Group 2, Zn and Group 13 metals. Key mechanistic pathways and catalyst developments are discussed, including tailored ligand design, heterometallic cooperativity, bicomponent systems and careful selection of the polymerisation conditions, all of which can be used to fine-tune the metal Lewis acidity and the metal-alkyl bond polarity.
Collapse
Affiliation(s)
- Eszter Fazekas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Phoebe A Lowy
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | | | - Anna Lykkeberg
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Yali Zhou
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Raju Chambenahalli
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
3
|
Kerr RWF, Williams CK. Zr(IV) Catalyst for the Ring-Opening Copolymerization of Anhydrides (A) with Epoxides (B), Oxetane (B), and Tetrahydrofurans (C) to Make ABB- and/or ABC-Poly(ester- alt-ethers). J Am Chem Soc 2022; 144:6882-6893. [PMID: 35388696 PMCID: PMC9084548 DOI: 10.1021/jacs.2c01225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ester-alt-ethers) can combine beneficial ether linkage flexibility and polarity with ester linkage hydrolysability, furnishing fully degradable polymers. Despite their promising properties, this class of polymers remains underexplored, in part due to difficulties in polymer synthesis. Here, a catalyzed copolymerization using commercially available monomers, butylene oxide (BO)/oxetane (OX), tetrahydrofuran (THF), and phthalic anhydride (PA), accesses a series of well-defined poly(ester-alt-ethers). A Zr(IV) catalyst is reported that yields polymer repeat units comprising a ring-opened PA (A), followed by two ring-opened cyclic ethers (B/C) (-ABB- or -ABC-). It operates with high polymerization control, good rate, and successfully enchains epoxides, oxetane, and/or tetrahydrofurans, providing a straightforward means to moderate the distance between ester linkages. Kinetic analysis of PA/BO copolymerization, with/without THF, reveals an overall second-order rate law: first order in both catalyst and butylene oxide concentrations but zero order in phthalic anhydride and, where it is present, zero order in THF. Poly(ester-alt-ethers) have lower glass-transition temperatures (-16 °C < Tg < 12 °C) than the analogous alternating polyesters, consistent with the greater backbone flexibility. They also show faster ester hydrolysis rates compared with the analogous AB polymers. The Zr(IV) catalyst furnishes poly(ester-alt-ethers) from a range of commercially available epoxides and anhydride; it presents a straightforward method to moderate degradable polymers' properties.
Collapse
Affiliation(s)
- Ryan W F Kerr
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | | |
Collapse
|
4
|
Alkoxy-Functionalized Schiff-Base Ligation at Aluminum and Zinc: Synthesis, Structures and ROP Capability. Catalysts 2021. [DOI: 10.3390/catal11091090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Schiff-base compounds 2,4-di-tert-butyl-6-(((3,4,5-trimethoxyphenyl)imino)methyl)phenol (L1H), 2,4-di-tert-butyl-6-(((2,4,6-trimethoxyphenyl)imino)methyl)phenol (L2H), 2,4-di-tert-butyl-6-(((2,4-trimethoxyphenyl)imino)methyl)phenol) (L3H) derived from anilines bearing methoxy substituents have been employed in the preparation of alkylaluminum and zinc complexes. Molecular structure determinations reveal mono-chelate aluminum complexes of the type [Al(Ln)(Me)2] (L1, 1; L2, 2; L3, 3), and bis(chelate) complexes for zinc, namely [Zn(Ln)2] (L1, 5; L2, 6; L3, 7). All complexes have significant activity at 50 °C and higher activity at 100 °C for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) with good control over the molar mass distribution (Mw/Mn < 2) and molecular weight. Complex 1 was found to be the most active catalyst, achieving 99% conversion within 18 h at 50 °C and giving polycaprolactone with high molecular weight; results are compared against aniline-derived (i.e., non-methoxy containing) complexes (4 and 8). Aluminum or zinc complexes derived from L1 exhibit higher activity as compared with complexes derived from L2 and L3. Complex 1 was also tested as an initiator for the copolymerization of ε-CL and glycolide (GL). The CL-GL copolymers have various microstructures depending on the feed ratio. The crosslinker 4,4′-bioxepane-7,7′-dione was used in the polymerization with ε-CL using 1, and well-defined cross-linked PCL was afforded of high molecular weight.
Collapse
|
5
|
Ruiz AC, Damodaran KK, Suman SG. Towards a selective synthetic route for cobalt amino acid complexes and their application in ring opening polymerization of rac-lactide. RSC Adv 2021; 11:16326-16338. [PMID: 35479168 PMCID: PMC9030263 DOI: 10.1039/d1ra02909f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
Catalysts based on cobalt amino acids and 2,2 bipyridine (bipy) present an attractive and cost-effective alternative as ring opening polymerization catalysts, yet this system remains underexplored despite the advantageous coordination properties of amino acids and bipy as ligands combined with the variety of accessible oxidation states and coordination geometries of cobalt. Here, metal complexes of type [Co(aa)2(bipy)] with amino acids (aa: glycine, leucine and threonine) as ligands are reported. The complexes were characterized spectroscopically (IR, UV-vis and 1H, 13C NMR for diamagnetic species), and by MS spectrometry and elemental analysis. The data reveal that the 2,2 bipyridine acts as a neutral bidentate donor coordinating to the metal ion through two nitrogen atoms and the amino acid acts as a bidentate ligand coordinating through the carboxylate and amino group forming a stable five membered ring and a pseudo-octahedral geometry around the Co center. The activity of the complexes for the ring opening polymerization (ROP) of rac-lactide is presented. The complexes are effective initiators for the ROP of rac-lactide (K obs = 9.05 × 10-4 s-1) at 100 : 1 [rac-lactide] : [catalyst] 1 M overall concentration of lactide in toluene at 403 K.
Collapse
Affiliation(s)
- Andrés Castro Ruiz
- Science Institute, University of Iceland Dunhagi 3, 107 Reykjavik Iceland
| | | | - Sigridur G Suman
- Science Institute, University of Iceland Dunhagi 3, 107 Reykjavik Iceland
| |
Collapse
|
6
|
Gaston AJ, Greindl Z, Morrison CA, Garden JA. Cooperative Heterometallic Catalysts for Lactide Ring-Opening Polymerization: Combining Aluminum with Divalent Metals. Inorg Chem 2021; 60:2294-2303. [PMID: 33512999 DOI: 10.1021/acs.inorgchem.0c03145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While homometallic (salen)Al catalysts display excellent performance in lactide ring-opening polymerization (ROP), heterometallic (salen)Al complexes have yet to be reported. Herein, we describe four heterobimetallic (salen)Al catalysts and show that the choice of the heterometal is key. Cooperative Al/Mg and Al/Zn combinations improved the catalyst activity by a factor of up to 11 compared to the mono-Al analogue, whereas the mono-Mg and mono-Zn analogues were completely inactive. In contrast, Al/Li and Al/Ca heterocombinations stunted the polymerization rate. Kinetic and computational studies suggest that Al/Mg and Al/Zn cooperativity arises from the close intermetallic proximity facilitating chloride bridging (thus enhancing initiation), which promotes a rigid square pyramidal geometry around the Al center and further increases the available monomer coordination sites. This work also translates the use of ab initio molecular dynamics calculations to ROP, introducing a useful method of investigating catalyst flexibility and revealing that ligand strain and molecular rigidity can enhance heterometallic catalyst performance.
Collapse
Affiliation(s)
- Anand J Gaston
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Zoe Greindl
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
7
|
Diment WT, Stößer T, Kerr RWF, Phanopoulos A, Durr CB, Williams CK. Ortho-vanillin derived Al(iii) and Co(iii) catalyst systems for switchable catalysis using ε-decalactone, phthalic anhydride and cyclohexene oxide. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02164d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Switchable catalysis is a useful one-pot method to prepare block polyesters utilising a single catalyst exposed to a mixture of monomers.
Collapse
Affiliation(s)
| | - Tim Stößer
- Oxford Chemistry
- Chemical Research Laboratory
- Oxford
- UK
| | | | | | | | | |
Collapse
|