1
|
Banasz R, Wałęsa-Chorab M. Photolithographic patterning of viologens containing styrene groups. RSC Adv 2023; 13:16206-16210. [PMID: 37266491 PMCID: PMC10230511 DOI: 10.1039/d3ra02287k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
A simple method for the patterning of styrene derivatives for electrochromic applications is presented. Novel viologen derivatives containing styrene groups were used in the formation of patternable electrochromic films. The patterning was done via photopolymerization and it shows the possibility of the use of styrene derivatives for the preparation of electrochromic patterns.
Collapse
Affiliation(s)
- Radosław Banasz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
2
|
Pathak DK, Moon HC. Recent progress in electrochromic energy storage materials and devices: a minireview. MATERIALS HORIZONS 2022; 9:2949-2975. [PMID: 36239257 DOI: 10.1039/d2mh00845a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of several functionalities into one isolated electrochemical body is necessary to realize compact and tiny smart electronics. Recently, two different technologies, electrochromic (EC) materials and energy storage, were combined to create a single system that supports and drives both functions simultaneously. In EC energy storage devices, the characteristic feature of EC materials, their optical modulation depending on the applied voltage, is used to visually identify the stored energy level in real time. Moreover, combining energy-harvesting and EC storage systems by sharing one electrode facilitates the realization of further compact multifunction systems. In this minireview, we highlight recent groundbreaking achievements in EC multifunction systems where the stored energy levels can be visualized using the color of the device.
Collapse
Affiliation(s)
- Devesh K Pathak
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
3
|
Wang J, Ren J, Tang Q, Wang X, Wang Y, Wang Y, Du Z, Wang W, Huang L, Belfiore LA, Tang J. An Efficient Cyan Emission from Copper (II) Complexes with Mixed Organic Conjugate Ligands. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1719. [PMID: 35268951 PMCID: PMC8910964 DOI: 10.3390/ma15051719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023]
Abstract
Copper (II) complexes containing mixed ligands were synthesized in dimethyl formamide (DMF). The intense cyan emission at an ambient temperature is observed for solid copper (II) complexes with salicylic acid and a 12% quantum yield with a fluorescent lifetime of approximately 10 ms. Hence, copper (II) complexes with salicylic acid are excellent candidates for photoactive materials. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) reveal that the divalent copper metal centers coordinate with the nitrogen and oxygen lone pairs of conjugate ligands. XPS binding energy trends for core electrons in lower-lying orbitals are similar for all three copper (II) complexes: nitrogen 1s and oxygen 1s binding energies increase relative to those for undiluted ligands, and copper 2p3/2 binding energies decrease relative to that for CuCl2. The thermal behavior of these copper complexes reveals that the thermal stability is characterized by the following pattern: Cu(1,10-phenanthroline)(salicylic acid) > Cu(1,10-phenanthroline)(2,2’-bipyridine) > Cu(1,10-phenanthroline)(1-benzylimidazole)2.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Junjie Ren
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Xinzhi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| | - Laurence A. Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.W.); (J.R.); (Q.T.); (X.W.); (Y.W.); (Y.W.); (Z.D.); (W.W.); (L.H.); (L.A.B.)
| |
Collapse
|
4
|
Banasz R, Kubicki M, Walesa-Chorab M. Investigation of electrochemistry and electrochromic performance of metallopolymer formed by electropolymerization of Fe(II) complex with triphenylamine-hydrazone ligand. Chemphyschem 2022; 23:e202100780. [PMID: 34978384 DOI: 10.1002/cphc.202100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Indexed: 11/11/2022]
Abstract
The complex of Fe(II) ions of general formula [FeL2](BF4)2 with triphenylamine-hydrazone ligand L has been synthesized and characterized. Oxidative electropolymerization of the complex proceeded smoothly on the working electrode producing homogenous thin film of metallopolymer. The film thickness and morphology of the layer was investigated by microscopy techniques such as SEM and AFM, and the composition of the film was confirmed by XPS analysis. It was found that after fifty successive oxidation/reduction cycles the film of thickness 120 nm was formed on the electrode surface. The metallopolymer was also characterized using cyclic voltammetry and spectroelectrochemical methods. The film was found to change its color from yellow to green-blue, high change in transmittance of 60% at 770 nm and good electrochemical stability during 375 cycles of switching of the potential between -0.1 V and +1.5 V, due to the presence of metal ions that link two ligand molecules resulting in formation of highly cross-linked film. The switching times (coloration and bleaching) were calculated to be 34.2 s and 7.3 s, respectively. Coloration efficiency of the formed film of polymeric complex was found to be 144 cm 2 /C.
Collapse
Affiliation(s)
- Radosław Banasz
- Adam Mickiewicz University: Uniwersytet im Adama Mickiewicza w Poznaniu, Chemistry, POLAND
| | - Maciej Kubicki
- Adam Mickiewicz University: Uniwersytet im Adama Mickiewicza w Poznaniu, Chemistry, POLAND
| | - Monika Walesa-Chorab
- Uniwersytet im Adama Mickiewicza w Poznaniu, chemistry, uniwersytetu poznanskiego 8, 61614, Poznan, POLAND
| |
Collapse
|
5
|
Napierała S, Kubicki M, Wałęsa-Chorab M. Toward Electrochromic Metallopolymers: Synthesis and Properties of Polyazomethines Based on Complexes of Transition-Metal Ions. Inorg Chem 2021; 60:14011-14021. [PMID: 34396778 PMCID: PMC8456411 DOI: 10.1021/acs.inorgchem.1c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/29/2022]
Abstract
The tridentate ligand L and its complexes with transition-metal ions have been prepared and characterized. The polycondensation reactions of transition-metal complexes with different dialdehydes led to the formation of transition-metal-complex-based polyazomethines, which have been obtained by on-substrate polymerization, and their electrochemical and electrochromic performance have been investigated. The most interesting properties are exhibited by polymers of Fe(II) and Cu(II) ions obtained by the reaction of the appropriate complexes with a triphenylamine-based dialdehyde. Fe(II) polymer P1 undergoes a reversible oxidation/reduction process and a color change from orange to gray due to the oxidation of Fe(II) to Fe(III) ions concomitant with the oxidation of the triphenylamine group. Its electrochromic properties such as long-term stability, switching times, and coloration efficiencies have been investigated, providing evidence of the utility of the on-substrate polycondensation reaction in the formation of thin films of electrochromic metallopolymers.
Collapse
Affiliation(s)
- Sergiusz Napierała
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Monika Wałęsa-Chorab
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Reductive Electropolymerization and Electrochromism of Iron(II) Complex with Styrene-Based Ligand. MATERIALS 2021; 14:ma14174831. [PMID: 34500920 PMCID: PMC8432686 DOI: 10.3390/ma14174831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
The benzimidazole-based ligand containing polymerizable styrene group has been prepared via condensation of picolinaldehyde derivative containing styrene moiety and benzimidazole-based hydrazine. The ligand reacted with iron(II) tetrafluoroborate and iron(II) trifluoromethanesulfonate giving red-brown complexes of Fe(II) ions of formula [FeL2]X2, where X = CF3SO3− (1) or BF4− (2). Reductive electropolymerization was used to obtain a thin layer of the polymeric complex, poly-1. Further investigation of electrochemical properties of the compound by cyclic voltammetry showed two quasi-reversible redox processes assigned to electrooxidation and electroreduction of the polymer. Spectroelectrochemical measurements confirmed that the polymer undergoes the color changes during oxidation and reduction process. The polymer in its neutral state (Fe(II)) is yellow and it exhibits absorption band at 370 nm, after oxidation to Fe(III) state absorption band shifts to 350 nm and the polymer is almost colorless. While the metal ions are reduced to Fe(I) absorption band at around 410 nm has been observed and the polymer changed its color to intense yellow. The stability of the polymer during multiple oxidation/reduction cycles has also been investigated.
Collapse
|
8
|
Chu D, Qu X, Zhang S, Zhang J, Yang Y, An W. Polyoxotungstate-based nanocomposite films with multi-color change and high volumetric capacitance toward electrochromic energy-storage applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj03939c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile fabrication strategy is proposed to construct a POMs-based nanocomposite film. It realizes multi-color transition during charging and discharging process, thereby links electrochromic behavior with energy storage performance.
Collapse
Affiliation(s)
- Dongxue Chu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China
| | - Xiaoshu Qu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China
| | - Shangfei Zhang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China
| | - Jianrong Zhang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China
| | - Yanyan Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China
| | - Wenjia An
- Food and Cosmetics Testing Institute of Guangzhou Customs Technology Center, Guangzhou, 510630, P. R. China
| |
Collapse
|