1
|
Kahraman E, Nasun-Saygili G. 5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies. Heliyon 2024; 10:e38494. [PMID: 39398033 PMCID: PMC11471203 DOI: 10.1016/j.heliyon.2024.e38494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
The present study focused on investigation of graphene oxide/hydroxyapatite (GO/HAp) and amine modified graphene oxide/hydroxyapatite (GO-NH2/HAp) composites as potential drug carrier agents for 5-Fluorouracil (5-FU). Incorporation of 5-Fluorouracil drug was performed via adsorption through π-π interactions and electrostatic attractions. Modification of graphene oxide was performed for the production of amine modified graphene oxide/hydroxyapatite composite with the intention of enhancing adsorption performance. The X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and zeta potential/particle size analysis were performed for particle characterization while Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis were used to analyze detailed morphological properties. Experimental design studies were followed out in order to determine the effect of adsorption parameters including graphene oxide amount, pH and initial drug concentration on 5-Fluorouracil adsorption behavior. Adsorption isotherms of both composites with unmodified and modified GO were best fitted to Freundlich model with R2 values of 0.9616 and 0.9682 respectively. The maximum adsorption capacities (qm) were calculated as 47.3 mg/g and 18.4 for graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites respectively at pH 2.0. The highest adsorption percentage was obtained for amine modified graphene oxide/hydroxyapatite composite as 40.87 % at pH 2.0 condition. In vitro release kinetic studies revealed that compliance with Higuchi and Korsmeyer-Peppas kinetic models were observed for graphene oxide/hydroxyapatite, whereas zero order and Korsmeyer-Peppas kinetic models pointed out as the well-fitted model for amine modified graphene oxide/hydroxyapatite composite. The release period of 5-FU drug from all composites were continued up to 8-10 h in physiological conditions (pH 7.4, 37 °C) indicating an achieved controlled release. Based on the overall findings, graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites could be suggested as a potential drug delivery agent for 5-FU in clinical applications.
Collapse
Affiliation(s)
- Ebru Kahraman
- Chemical Engineering Department, Istanbul Technical University, 34469, Turkey
| | | |
Collapse
|
2
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
3
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|
4
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Ulker D, Ozyurt R, Erkasap N, Butun V. Magnetic Targeting of 5-Fluorouracil-Loaded Liposome-Nanogels for In Vivo Breast Cancer Therapy and the Cytotoxic Effects on Liver and Kidney. AAPS PharmSciTech 2022; 23:289. [DOI: 10.1208/s12249-022-02438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
|
6
|
Jia F, Gao Y, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering (Basel) 2022; 9:625. [PMID: 36354536 PMCID: PMC9687342 DOI: 10.3390/bioengineering9110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional drug therapy faces challenges such as drug distribution throughout the body, rapid degradation and excretion, and extensive adverse reactions. In contrast, micro/nanoparticles can controllably deliver drugs to target sites to improve drug efficacy. Unlike traditional large-scale synthetic systems, microfluidics allows manipulation of fluids at the microscale and shows great potential in drug delivery and precision medicine. Well-designed microfluidic devices have been used to fabricate multifunctional drug carriers using stimuli-responsive materials. In this review, we first introduce the selection of materials and processing techniques for microfluidic devices. Then, various well-designed microfluidic chips are shown for the fabrication of multifunctional micro/nanoparticles as drug delivery vehicles. Finally, we describe the interaction of drugs with lymphatic vessels that are neglected in organs-on-chips. Overall, the accelerated development of microfluidics holds great potential for the clinical translation of micro/nanoparticle drug delivery systems for disease treatment.
Collapse
Affiliation(s)
- Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Gao
- Troop 96901 of the Chinese People’s Liberation Army, Beijing 100094, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Faraguna F, Blažic R, Vidović E, Jukić A. Synthesis and properties of surfactants for carbon nanotubes based on copolymers of 2-N-morpholinoethyl methacrylate with dodecyl methacrylate and styrene. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Li M, Li S, Li Y, Li X, Yang G, Li M, Xie Y, Su W, Wu J, Jia L, Li S, Ma W, Li H, Guo N, Yu P. Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer. Eur J Med Chem 2022; 233:114198. [DOI: 10.1016/j.ejmech.2022.114198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
|
9
|
Tang Q, Liu D, Chen H, He D, Pan W, Li Q, Xie W, Chen S, Yu C. Functionalized PAMAM-Based system for targeted delivery of miR-205 and 5-fluorouracil in breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Buczek A, Kupka T, Broda MA, Maślanka S, Pentak D. Liposomes as nonspecific nanocarriers for 5-Fluorouracil in the presence of cyclodextrins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|