1
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
2
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
3
|
Singh P, Baniasadi H, Gupta S, Ghosh R, Shaikh S, Seppälä J, Kumar A. 3D-printed cellulose nanocrystals and gelatin scaffolds with bioactive cues for regenerative medicine: Advancing biomedical applications. Int J Biol Macromol 2024; 278:134402. [PMID: 39094885 DOI: 10.1016/j.ijbiomac.2024.134402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
3D printed scaffolds have revolutionized the field of regenerative medicine by overcoming the lacunas such as precision, customization, and reproducibility observed through traditional methods of scaffold preparation such as freeze-drying, electrospinning, etc. Combining the advantages of 3D printed scaffolds along with bioactive cues such as signaling molecules can be an effective treatment approach. In the present study, cellulose nanocrystals (CNCs) along with gelatin, in different ratios, were used for scaffold preparation through the direct ink writing technique and thoroughly characterized. The scaffolds showed porous microstructure, high swelling ratio (∼390 to 590), degradability and porosity (∼65 %). In vitro biocompatibility assays showed high biocompatibility and no toxicity through live-dead, proliferation and hemolysis assay. Further, the optimum formulation was functionalized with nitric oxide (NO)-releasing modified gelatin to enhance the scaffold's biomedical applicability. Functionality assays with this formulation, scratch, and neurite outgrowth showed positive effects of NO on cell migration and neurite length. The study presents the fabrication, modification, and biomedical applicability of the aforementioned inks, which paves new pathways in the field of 3D printing of scaffolds with significant potential for biomedical applications, soft tissue engineering, and wound dressing, for example.
Collapse
Affiliation(s)
- Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rupita Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
4
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
5
|
Danışman-Kalındemirtaş F, Kariper İA, Erdemir G, Sert E, Erdem-Kuruca S. Evaluation of anticancer effects of carboplatin-gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci Rep 2022; 12:10686. [PMID: 35739313 PMCID: PMC9226150 DOI: 10.1038/s41598-022-15051-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Carboplatin (CP), a platinum analog, is one of the most widely used chemotherapeutic agents in the treatment of colorectal cancer. Although platinum-based drugs are quite effective in anticancer treatments, their use in a wide spectrum and effective treatment possibilities are limited due to their systemic side effects and drug resistance development. In recent years, studies have focused on increasing the therapeutic efficacy of platinum-based drugs with drug delivery systems. Gelatin, a protein, obtained by the hydrolysis of collagen, is a biocompatible and biodegradable material that can be used in nano drug delivery systems. In this study, CP-loaded gelatin-based NPs (CP-NPs) were exposed to IR light in different temperatures at 30, 35, 40, 45, and 50 °C and characterized by FESEM-EDX, FTIR, UV–Vis, DLS. Accordingly, we synthesized gelatin-based CP-NPs of different sizes between 10–290 nm by exposure to IR. We found that CP-NPs-50, 16 nm nano-sized, obtained at 50 °C had the most cytotoxicity and was 2.2 times more effective than the free drug in HCT 116 colon cancer cells. Moreover, we showed that the cytotoxicity of CP-NPs-50 in normal HUVEC cells was lower. Additionally, we demonstrated that CP-NPs enhanced apoptotic activity while not developing MDR1-related resistance in colon cancer cells. In this study, for the first time drug loaded gelatin-based nanoparticles were synthesized in different sizes with a newly self-assembly method by exposing them to infrared light at different temperatures and their anticancer effects were evaluated subsequently.
Collapse
Affiliation(s)
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, 38039, Kayseri, Turkey.
| | - Gökçe Erdemir
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, 34390, Istanbul, Turkey.,Molecular Cancer Research Center (ISUMKAM), Istinye University, 34010, Istanbul, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Istanbul, Turkey
| | - Serap Erdem-Kuruca
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Istanbul, Turkey
| |
Collapse
|