1
|
Li F, Chen C, Chen X. Tremendous advances, multifaceted challenges and feasible future prospects of biodegradable medical polymer materials. RSC Adv 2024; 14:32267-32283. [PMID: 39399258 PMCID: PMC11468490 DOI: 10.1039/d4ra00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
In recent years, biodegradable medical polymer materials (BMPMs) have stood out among many biomedical materials due to their unique advantages, such as high mechanical strength, good biocompatibility, strong corrosion resistance and excellent processability. In this review, we first provide a brief introduction of biodegradable medical materials from both natural and synthetic perspectives, and then systematically categorize BMPMs based on their applications in clinical medicine and highlight the great progress they have made in recent years. Additionally, we also point out several overlooked areas in the research of BMPMs, offering guidance for comprehensive future exploration of these materials. Finally, in view of the complex challenges faced by BMPMs today, their future directions are scientifically proposed. This work contributes to the ongoing efforts of BMPMs in the biomedical field and provides a steppingstone for developing more effective BMPM-based products for clinical applications.
Collapse
Affiliation(s)
- Fulong Li
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Chao Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
| | - Xiaohong Chen
- School of Materials & Chemistry, University of Shanghai for Science & Technology Shanghai 200093 China +86 15737319783 +86 17626650845 +86 13167086410
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials Shanghai 200093 China
| |
Collapse
|
2
|
Selim MS, El-Hoshoudy AN, Zaki EG, El-Saeed AM, Farag AA. Durable graphene-based alkyd nanocomposites for surface coating applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43476-43491. [PMID: 38700767 PMCID: PMC11252194 DOI: 10.1007/s11356-024-33339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024]
Abstract
Recently, the scientific community's main goal is the long-term sustainability. Vegetable oils are easily accessible, non-depletable, and cost-effective materials. Vegetable oils are used to prepare polymeric alkyd surfaces. Novel and exciting designs of alkyd/graphene nanocomposites have provided eco-friendly thermal stability and protective coating surfaces. This review has briefly described important graphene-based alkyd nanocomposites along with their applications as protective coatings. These alkyd composites have high hydrophobicity, corrosion resistance, and durability. Graphene-based alkyd nanocoatings have many industrial and research interests because of their exceptional thermal and chemical properties. This work introduces an advanced horizon for developing protective nanocomposite coatings. The anti-corrosion properties and coatings' longevity may be improved by combining the synergistic effects of hybrid nanofillers introduced in this work.
Collapse
Affiliation(s)
- Mohamed S Selim
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | | | - ElSayed G Zaki
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ashraf M El-Saeed
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
3
|
Coats JP, Cochereau R, Dinu IA, Messmer D, Sciortino F, Palivan CG. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol Biosci 2023; 23:e2200474. [PMID: 36949011 DOI: 10.1002/mabi.202200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Collapse
Affiliation(s)
- John Peter Coats
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Rémy Cochereau
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Daniel Messmer
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Flavien Sciortino
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- National Centre for Competence in Research - Molecular Systems Engineering, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
4
|
Bal-Öztürk A, Tietilu ŞD, Yücel O, Erol T, Akgüner ZP, Darıcı H, Alarcin E, Emik S. Hyperbranched polymer-based nanoparticle drug delivery platform for the nucleus-targeting in cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM. Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Top Curr Chem (Cham) 2022; 380:45. [PMID: 35951265 PMCID: PMC9366760 DOI: 10.1007/s41061-022-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Glycopolymer materials have emerged as a significant biopolymer class that has piqued the scientific community's attention due to their potential applications. Recently, they have been found to be a unique synthetic biomaterial; glycopolymer materials have also been used for various applications, including direct therapeutic methods, medical adhesives, drug/gene delivery systems, and biosensor applications. Therefore, for the next stage of biomaterial research, it is essential to understand current breakthroughs in glycopolymer-based materials research. This review discusses the most widely utilized synthetic methodologies for glycopolymer-based materials, their properties based on structure-function interactions, and the significance of these materials in biosensing applications, among other topics. When creating glycopolymer materials, contemporary polymerization methods allow precise control over molecular weight, molecular weight distribution, chemical activity, and polymer architecture. This review concludes with a discussion of the challenges and complexities of glycopolymer-based biosensors, in addition to their potential applications in the future.
Collapse
Affiliation(s)
- Mohammad R. Thalji
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 Gyeongbuk South Korea
| | - Amal Amin Ibrahim
- Polymers and pigments department, Chemical industries research institute, National Research Centre, El-Bohouth St, Dokki, Cairo, 12622 Egypt
| | - Kwok Feng Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Malaysia
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, Rostov-on-Don, Russian Federation
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| |
Collapse
|
6
|
Kandil H, Nour SA, Amin A. Promising antimicrobial material based on hyperbranched polyacrylic acid for biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heba Kandil
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Shaimaa A. Nour
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| | - Amal Amin
- Polymers and Pigments department, Chemical industries research institute, National Research Centre, Dokki, Giza, Egypt, 12622
| |
Collapse
|