1
|
Tollemeto M, Ursulska S, Welzen PLW, Thamdrup LHE, Malakpour-Permlid A, Li Y, Soufi G, Patiño Padial T, Christensen JB, Hagner Nielsen L, van Hest J, Boisen A. Tailored Polymersomes for Enhanced Oral Drug Delivery: pH-Sensitive Systems for Intestinal Delivery of Immunosuppressants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403640. [PMID: 38963162 DOI: 10.1002/smll.202403640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Ensuring precise drug release at target sites is crucial for effective treatment. Here, pH-responsive nanoparticles for oral administration of mycophenolate mofetil, an alternative therapy for patients with inflammatory bowel disease unresponsive to conventional treatments is developed. However, its oral administration presents challenges due to its low solubility in the small intestine and high solubility and absorption in the stomach. Therefore, this aim is to design a drug delivery system capable of maintaining drug solubility compared to the free drug while delaying absorption from the stomach to the intestine. Successful synthesis and assembly of a block copolymer incorporating a pH-responsive functional group is achieved. Dynamic light scattering indicated a significant change in hydrodynamic size when the pH exceeded 6.5, confirming successful incorporation of the pH-responsive group. Encapsulation and controlled release of mycophenolate mofetil are efficiently demonstrated, with 90% release observed at intestinal pH. In vitro cell culture studies confirmed biocompatibility, showing no toxicity or adverse effects on Caco-2 cells. In vivo oral rat studies indicated reduced drug absorption in the stomach and enhanced absorption in the small intestine with the developed formulation. This research presents a promising drug delivery system with potential applications in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Matteo Tollemeto
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Sintija Ursulska
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Pascal L W Welzen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Lasse H E Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Atena Malakpour-Permlid
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Yudong Li
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Gohar Soufi
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tania Patiño Padial
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Jørn B Christensen
- Department of Chemistry, University of Copenhagen, Thovaldsensvej 40, Frederiksberg, DK-1871, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jan van Hest
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center IDUN, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
3
|
Piskun YA, Ksendzov EA, Resko AV, Soldatov MA, Timashev P, Liu H, Vasilenko IV, Kostjuk SV. Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of ε-Caprolactone. Polymers (Basel) 2023; 15:1291. [PMID: 36904533 PMCID: PMC10007598 DOI: 10.3390/polym15051291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The bulk ring-opening polymerization (ROP) of ε-caprolactone using phosphazene-containing porous polymeric material (HPCP) has been studied at high reaction temperatures (130-150 °C). HPCP in conjunction with benzyl alcohol as an initiator induced the living ROP of ε-caprolactone, affording polyesters with a controlled molecular weight up to 6000 g mol-1 and moderate polydispersity (Ð~1.5) under optimized conditions ([BnOH]/[CL] = 50; HPCP: 0.63 mM; 150 °C). Poly(ε-caprolactone)s with higher molecular weight (up to Mn = 14,000 g mol-1, Ð~1.9) were obtained at a lower temperature, at 130 °C. Due to its high thermal and chemical stability, HPCP can be reused for at least three consecutive cycles without a significant decrease in the catalyst efficiency. The tentative mechanism of the HPCP-catalyzed ROP of ε-caprolactone, the key stage of which consists of the activation of the initiator through the basic sites of the catalyst, was proposed.
Collapse
Affiliation(s)
- Yuliya A. Piskun
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Evgenii A. Ksendzov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Anastasiya V. Resko
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Mikhail A. Soldatov
- Department of Science and Technology Projects, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., 125047 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Irina V. Vasilenko
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220050 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
4
|
Yin W, Wang Y, Xiao Y, Mao A, Lang M. Phenylboronic acid conjugated mPEG-b-PCL micelles as DOX carriers for enhanced drug encapsulation and controlled drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|