1
|
Qin WY, Shi CY, Liu GQ, Tian H, Qu DH. Tunable Mechanically Interlocked Semi-Crystalline Networks. Angew Chem Int Ed Engl 2024:e202423029. [PMID: 39716015 DOI: 10.1002/anie.202423029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
High-performance polymers based on dynamic chemistry have been widely explored for multi-field advanced applications. However, noncovalent sacrificial bond-mediated energy dissipation mechanism causes a trade-off between mechanical toughness and resilience. Herein, we achieved the synchronous boost of seemingly conflicting material properties including mechanical robustness, toughness and elasticity via the incorporation of mechanical chemistry into traditional semi-crystalline networks. Detailed rheological tests and all-atom molecular dynamics simulation reveal that the excellent mechanical robustness and toughness are attributed to the dissociation of crystalline domains threading through the sieve-shape macrocycles. Reversible nano-crystalline domains and ring-sliding-effect accelerated segment motion efficiently reduce energy dissipation to achieve instantaneous resilience. Moreover, the model polymers demonstrate that the multiple dynamic components endow the resulting polymer with excellent reprocessability under mild conditions. This mechanically interlocked semi-crystalline polymer exhibits potential applications as a thermal/photo actuator. This work reveals the synergic effects of mechanically interlocked sites and tunable crystalline domains, thus providing a reliable guide for the comprehensive improvement of material performance.
Collapse
Affiliation(s)
- Wen-Yu Qin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Guo-Quan Liu
- School of Chemistry and Chemical Engineering, Frontiers, Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Zhou G, Zhang H, Su Z, Zhang X, Zhou H, Yu L, Chen C, Wang X. A Biodegradable, Waterproof, and Thermally Processable Cellulosic Bioplastic Enabled by Dynamic Covalent Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301398. [PMID: 37127887 DOI: 10.1002/adma.202301398] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The growing environmental concern over petrochemical-based plastics continuously promotes the exploration of green and sustainable substitute materials. Compared with petrochemical products, cellulose has overwhelming superiority in terms of availability, cost, and biodegradability; however, cellulose's dense hydrogen-bonding network and highly ordered crystalline structure make it hard to be thermoformed. A strategy to realize the partial disassociation of hydrogen bonds in cellulose and the reassembly of cellulose chains via constructing a dynamic covalent network, thereby endowing cellulose with thermal processability as indicated by the observation of a moderate glass transition temperature (Tg = 240 °C), is proposed. Moreover, the cellulosic bioplastic delivers a high tensile strength of 67 MPa, as well as excellent moisture and solvent resistance, good recyclability, and biodegradability in nature. With these advantageous features, the developed cellulosic bioplastic represents a promising alternative to traditional plastics.
Collapse
Affiliation(s)
- Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haishan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
3
|
Ultra-toughened poly(glycolic acid)-based blends with controllable hydrolysis behavior fabricated via reactive compatibilization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zafar R, Lee W, Kwak SY. A facile strategy for enhancing tensile toughness of poly(lactic acid) (PLA) by blending of a cellulose bio-toughener bearing a highly branched polycaprolactone. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ramos-Durán G, González-Zarate ADC, Enríquez-Medrano FJ, Salinas-Hernández M, De Jesús-Téllez MA, Díaz de León R, López-González HR. Synthesis of copolyesters based on substituted and non-substituted lactones towards the control of their crystallinity and their potential effect on hydrolytic degradation in the design of soft medical devices. RSC Adv 2022; 12:18154-18163. [PMID: 35800320 PMCID: PMC9210866 DOI: 10.1039/d2ra01861f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 01/22/2023] Open
Abstract
ROP synthesis of polyesters at different molar ratios of monomers ε-caprolactone (ε-CL) in combination with alkyl substituted lactones δ-decalactone (δ-DL), ε-decalactone (ε-DL) and δ-dodecalactone (δ-DD), as well copolymers based on ε-DL and δ-DD.
Collapse
Affiliation(s)
- Gabriela Ramos-Durán
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Aracely del Carmen González-Zarate
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Francisco Javier Enríquez-Medrano
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Myrna Salinas-Hernández
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Marco A. De Jesús-Téllez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Ramon Díaz de León
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| | - Hector Ricardo López-González
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, San José de los Cerritos, 25294, Saltillo, Coahuila, Mexico
| |
Collapse
|