1
|
Karlinskii BY. Synthesis of Renewable Furan-Based Benzoxazines and Polybenzoxazines: Recent Advances. CHEMSUSCHEM 2024:e202402200. [PMID: 39714865 DOI: 10.1002/cssc.202402200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
The burgeoning field of materials science is currently witnessing a paradigm shift toward the utilization of renewable plant biomass as a viable chemical source for the production of sustainable materials. This trend is substantiated by a significant corpus of recent experimental and theoretical research focused on the synthesis and property analysis of such polymers. Within this context, polybenzoxazines stand out as a pioneering class of thermosetting polymers, distinguished by their exceptional thermal and mechanical characteristics, coupled with the feasibility of synthesizing their precursor monomers from eco-friendly, renewable resources, including plant phenols and furfurylamine. Opting for furfurylamine over traditional aniline and its petroleum-derived counterparts in the synthesis of benzoxazines not only increases the eco-compatibility of the resultant materials but also imparts a significant alteration to their properties. This short review, spanning the last three years, delves into the principal advancements achieved in the realm of novel furan-bearing benzoxazines and polybenzoxazines from 2021 to present, accentuating both the triumphs and challenges encountered in this burgeoning domain.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
- BioChemTech Research Center, Tula State University, Pr. Lenina 92, Tula, 300012, Russia
| |
Collapse
|
2
|
Yao Z, Lu Y, Song J, Zhang K. Synthesis of Daidzein and Thiophene Containing Benzoxazine Resin and Its Thermoset and Carbon Material. Molecules 2023; 28:5077. [PMID: 37446739 DOI: 10.3390/molecules28135077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.
Collapse
Affiliation(s)
- Zhenhao Yao
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianan Song
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Lu Y, Peng Y, Yang Y, Liu J, Zhang K. Low-Temperature Terpolymerizable Benzoxazine Monomer Bearing Norbornene and Furan Groups: Synthesis, Characterization, Polymerization, and Properties of Its Polymer. Molecules 2023; 28:molecules28093944. [PMID: 37175354 PMCID: PMC10179839 DOI: 10.3390/molecules28093944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
There is an urgency to produce novel high-performance resins to support the rapid development of the aerospace field and the electronic industry. In the present work, we designed and consequently synthesized a benzoxazine monomer (oHPNI-fa) bearing both norbornene and furan groups through the flexible benzoxazine structural design capability. The molecular structure of oHPNI-fa was verified by the combination characterization of nuclear magnetic resonance spectrum, FT-IR technology, and high-resolution mass spectrum. The thermally activated terpolymerization was monitored by in situ FT-IR as well as differential scanning calorimetry (DSC). Moreover, the low-temperature-curing characteristics of oHPNI-fa have also been revealed and discussed in the current study. Furthermore, the curing kinetics of the oHPNI-fa were investigated by the Kissinger and Ozawa methods. The resulting highly cross-linked thermoset based on oHPNI-fa showed excellent thermal stability as well as flame retardancy (Td10 of 425 °C, THR of 4.9 KJg-1). The strategy for molecular design utilized in the current work gives a guide to the development of high-performance resins which can potentially be applied in the aerospace and electronics industries.
Collapse
Affiliation(s)
- Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaliang Peng
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Ye J, Fan Z, Zhang S, Liu X. Improved curing reactivity, thermal resistance and mechanical properties of furylamine‐based benzoxazine using melamine as an amine source. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jiajia Ye
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Zilin Fan
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Shuai Zhang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| | - Xiaobo Liu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu People's Republic of China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials Chengdu China
| |
Collapse
|
5
|
Wu ZM, Cao Y, Guo JH, Fang XQ, Liu CM. Bio-based poly(vinyl benzoxazine) derived from 3-hydroxycinnamic acid— An intrinsically green flame-retardant polymer free of both halogen and phosphorus. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Deliballi Z, Kiskan B, Yagci Y. Catalyzing benzoxazine polymerization with borohydrides to reduce the cure temperature and coloring. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Xiao T, Wang P, Ran Q. Preparation and enhanced flame retardancy of
co‐polybenzoxazines
containing diacetal structure. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tianming Xiao
- College of Polymer Science and Engineering Sichuan University, State Key Laboratory of Polymer Materials Engineering Chengdu China
| | - Peng Wang
- College of Polymer Science and Engineering Sichuan University, State Key Laboratory of Polymer Materials Engineering Chengdu China
| | - Qichao Ran
- College of Polymer Science and Engineering Sichuan University, State Key Laboratory of Polymer Materials Engineering Chengdu China
| |
Collapse
|
8
|
Bu M, Zhang X, Zhou T, Lei C. Fully bio-based epoxy resins derived from magnolol and varying furan amines: cure kinetics, superior mechanical and thermal properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Xie L, Yang R, Li N, Froimowicz P, Zhang K. Competitive Study of Novel Triptycene-Containing Benzoxazine Monomers and a Thermoresponsive Linear Main Chain-Type Benzoxazine Copolymer: Synthesis, Polymerization, and Thermal Properties of Their Thermosets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Xie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, Subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Reyes-Mateo K, Marquet J, Hernando J, Sebastián RM. Photothermal polymerization of benzoxazines. Polym Chem 2022. [DOI: 10.1039/d2py00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible irradiation of mixtures of benzoxazine monomers and metal salt catalysts leads to extensive photothermal polymerization, which allows the preparation of complex polybenzoxazine features via photolithography.
Collapse
Affiliation(s)
- Kevin Reyes-Mateo
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Marquet
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Rosa M. Sebastián
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|