1
|
Song L, Chen W, Lu X, Liu Z, Rao Q, Xiao W, Zhan X, Yang S, Gao F, Zhang Q. Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid. ACS APPLIED BIO MATERIALS 2025; 8:1583-1593. [PMID: 39869782 DOI: 10.1021/acsabm.4c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated. The obtained particles possessed a narrow particle size distribution and good sphericity with a diameter of 878 nm, and their growth process was consistent with the La-Mer growth mechanism. Furthermore, MSNs were modified with amino acids and loaded with rosmarinic acid (RosA), accompanied by the "outer packaging" of pectin to obtain RosA@MSNs-Pec. RosA was added at 200, 150, and 100 mg within 72 h, with a drug loading of 193, 175.5, and 156 mg/g and an encapsulation rate of 19.3, 17.6, and 15.6, respectively. Interestingly, RosA@MSNs-Pec demonstrated the dual pH and pectinase response property, and its release curve conformed to the Higuchi model, indicating that its drug-controlled release was based on Fick's law.
Collapse
Affiliation(s)
- Lina Song
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Wenxian Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Xinbo Lu
- Zhejiang China Tobacco Industry Co., Ltd, Hangzhou310027, China
| | - Ziqiang Liu
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Qingqing Rao
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Weiqiang Xiao
- Zhejiang China Tobacco Industry Co., Ltd, Hangzhou310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Shengxiang Yang
- College of Chemical and Materials Engineering, Zhejiang Agricultural and Forestry University, Lin'an 311300, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| |
Collapse
|
2
|
Vieira WT, Viegas JSR, da Silva MGC, de Oliveira Nascimento L, Vieira MGA, Sarmento B. Self-assembly mucoadhesive beads of κ-carrageenan/sericin for indomethacin oral extended release. Int J Biol Macromol 2024; 270:132062. [PMID: 38705340 DOI: 10.1016/j.ijbiomac.2024.132062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Oral drug administration, especially when composed of mucoadhesive delivery systems, has been a research trend due to increased residence time and contact with the mucosa, potentially increasing drug bioavailability and stability. In this context, this study aimed to develop self-assembly mucoadhesive beads composed of blends of κ-carrageenan and sericin (κ-Car/Ser) loaded with the anti-inflammatory drug indomethacin (IND). We investigated the swelling, adhesion behaviour, and mechanical/physical properties of the beads, assessing their effects on cell viability, safety and permeation characteristics in both 2D and triple-culture model. The swelling ratio of the beads indicated pH-responsiveness, with maximum water absorption at pH 6.8, and strong mucoadhesion, increasing primarily with higher polymer concentrations. The beads exhibited thermal stability and no chemical interaction with IND, showing improved mechanical properties. Furthermore, the beads remained stable during accelerated and long-term storage studies. The beads were found to be biocompatible, and IND encapsulation improved cell viability (>70 % in both models, 79 % in VN) and modified IND permeation through the models (6.3 % for F5 formulation (κ-Car 0.90 % w/v | Ser 1.2 % w/v| IND 3.0 g); 10.9 % for free IND, p < 0.05). Accordingly, κ-Car/Ser/IND beads were demonstrated to be a promising IND drug carrier to improve oral administration while mitigating the side effects of non-steroidal anti-inflammatories.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Juliana Santos Rosa Viegas
- i3S - Institute for Research & Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Rua Cândido Portinari, 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| | - Bruno Sarmento
- i3S - Institute for Research & Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Li Z, Geng Y, Bu K, Chen Z, Xu K, Zhu C. Construction of a pectin/sodium alginate composite hydrogel delivery system for improving the bioaccessibility of phycocyanin. Int J Biol Macromol 2024; 269:131969. [PMID: 38697419 DOI: 10.1016/j.ijbiomac.2024.131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.
Collapse
Affiliation(s)
- Zhixin Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Yuxin Geng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440, Jiyan Road, Jinan, Shandong Province 250117, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Zhengtao Chen
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699, Qingdao Road, Jinan, Shandong Province 250117, PR China.
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
4
|
Nie C, Liang Q, Gao Q. Preparation of Eudragit S100-pullulan/hydroxypropyl-β-cyclodextrin complex-Eudragit S100 multilayer nanofiber film for resveratrol colon delivery. Int J Biol Macromol 2024; 270:132388. [PMID: 38754685 DOI: 10.1016/j.ijbiomac.2024.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-β-cyclodextrin (HPβCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPβCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.
Collapse
Affiliation(s)
- Congyi Nie
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qian Liang
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Intiquilla A, Arazo M, Gamboa A, Caro N, Gotteland M, Palomino-Calderón A, Abugoch L, Tapia C. Nanoemulsions Based on Soluble Chenopodin/Alginate Complex for Colonic Delivery of Quercetin. Antioxidants (Basel) 2024; 13:658. [PMID: 38929097 PMCID: PMC11200757 DOI: 10.3390/antiox13060658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder caused by uncontrolled immune activation and the subsequent destruction of the colon tissue. Quercetin (Qt) is a natural antioxidant and anti-inflammatory agent proposed as an alternative to mitigate IBD. However, its use is limited by its low oral bioavailability. This study aimed to develop nanoemulsions (NEs) based on a soluble chenopodin/alginate (QPA) complex and Tween 80 (T80), intended for the colonic release of Qt, activated by the pH (5.4) and bacteria present in the human colonic microbiota. NEs with different ratios of QPA/Tw80 (F1-F6) were prepared, where F4Qt (60/40) and F5Qt (70/30) showed sizes smaller than 260 nm, PDI < 0.27, and high encapsulation efficiency (>85%). The stability was evaluated under different conditions (time, temperature, pH, and NaCl). The DSC and FTIR analyses indicated hydrophobic and hydrogen bonding interactions between QPA and Qt. F4Qt and F5Qt showed the greater release of Qt in PBS1X and Krebs buffer at pH 5.4 (diseased condition), compared to the release at pH 7.4 (healthy condition) at 8 h of study. In the presence of E. coli and B. thetaiotaomicron, they triggered the more significant release of Qt (ƒ2 < 50) compared to the control (without bacteria). The NEs (without Qt) did not show cytotoxicity in HT-29 cells (cell viability > 80%) and increased the antioxidant capacity of encapsulated Qt. Therefore, these NEs are promising nanocarriers for the delivery of flavonoids to the colon to treat IBD.
Collapse
Affiliation(s)
- Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jirón Puno 1002, Lima 15081, Peru;
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Migdalia Arazo
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 8330015, Chile;
| | - Alexander Gamboa
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170022, Chile;
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8370003, Chile;
| | - Martin Gotteland
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8330015, Chile;
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago 8330015, Chile
| | - Alan Palomino-Calderón
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Lilian Abugoch
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| | - Cristian Tapia
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Santiago 8330015, Chile;
| |
Collapse
|
6
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
7
|
Vieira WT, Nicolini MVS, da Silva MGC, Nascimento LDO, Vieira MGA. κ-Carrageenan/sericin polymer matrix modified with different crosslinking agents and thermal crosslinking: Improved release profile of mefenamic acid. Int J Biol Macromol 2024; 262:129823. [PMID: 38296146 DOI: 10.1016/j.ijbiomac.2024.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The crosslinking of the polymer matrix with compatible macromolecules results in a three-dimensional network structure that offers an enhancement in the controlled release properties of the material. In this sense, this work aimed to improve the release profile of mefenamic acid (MAC) through crosslinking strategies. κ-Carrageenan/sericin crosslinked blend was obtained by covalent and thermal crosslinking and the different formulations were characterized. The gastroresistant potential and release profile were evaluated in the dissolution assay. The effect and characterization of the particles were investigated. Multiple units presented high entrapment efficiency (94.11-104.25), high drug loading (36.50-47.50 %) and adequate particle size (1.34-1.57 mm) with rough surface and visually spherical shape. The Weibull model showed that drug release occurred by relaxation, erosion and Fickian diffusion. Material stability and absence of MAC -polymer interactions were demonstrated by FTIR and thermogravimetric analysis. DSC showed a stable character of MAC in the drug-loaded beads. Moreover, the application studies of κ-Car/Ser/carboxymethylcellulose in the in vitro intestine mode showed that the crosslinked blend increased cell viability (>85 %), while free MAC exhibited a cytotoxic effect. Finally, the crosslinked k-Car/Ser blend MAC -loaded showed promising properties of a sustained release form of anti-inflammatory drug.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Maria Vitória Silva Nicolini
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
8
|
Pérez-Flores JG, García-Curiel L, Pérez-Escalante E, Contreras-López E, Olloqui EJ. Arabinoxylans matrixes as a potential material for drug delivery systems development - A bibliometric analysis and literature review. Heliyon 2024; 10:e25445. [PMID: 38352745 PMCID: PMC10862686 DOI: 10.1016/j.heliyon.2024.e25445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Arabinoxylans (AX) have become a focal point in the pharmaceutical sector owing to their physicochemical, biological, and functional properties. The purpose of this paper was to present a summary of the utilization of AX as drug release matrices through a bibliometric analysis (BA) and a literature review to spotlight the AX functional characteristics and their technological applications to promote this line of research. The BA was carried out using data from a Web of Science database research, specifically emphasizing the analysis of authors' keywords. This approach was chosen due to its significance in comprehensively understanding a particular research field and its relevance for in-depth knowledge of a research field. The BA outcomes revealed limited information concerning the AX applications in both release matrices and as excipients in the formulation and development of drug delivery systems (DDS), so there is a need for additional scientific and technological research in these areas to address the existing information gaps. However, the literature review shows that the native and modified AX from different delivery release systems, such as macrogels (including films, tablets, and hard gelatin capsules) and multi-particulate systems (including micro and nanogels), present an excellent potential as release matrices of biomolecules and drugs, such as doxorubicin, diclofenac sodium, caffeine, gentamicin, tizanidine hydrochloride, and insulin. In conclusion, AX have a wide potential for application in the pharmaceutical industry, so this work is expected to be a reference point for future research by scientists, technologists, and entrepreneurs who cope with the subject.
Collapse
Affiliation(s)
- Jesús Guadalupe Pérez-Flores
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción s/n, Carretera Pachuca-Actopan, 42060, San Agustín Tlaxiaca, Hidalgo, Mexico
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Laura García-Curiel
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción s/n, Carretera Pachuca-Actopan, 42060, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Enrique J. Olloqui
- CONAHCyT, Colegio de Postgraduados, Campus Puebla, Boulevard Forjadores, 72760, Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Vieira WT, da Silva MGC, de Oliveira Nascimento L, Vieira MGA. Development and characterization of crosslinked k-carrageenan/sericin blend with covalent agents or thermal crosslink for indomethacin extended release. Int J Biol Macromol 2023; 246:125558. [PMID: 37392907 DOI: 10.1016/j.ijbiomac.2023.125558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Modified release of multiparticulate pharmaceutical forms is a key therapeutic strategy to reduce side effects and toxicity caused by high and repeated doses of immediate-release oral drugs. This research focused on the encapsulation of indomethacin (IND) in the crosslinked k-Car/Ser polymeric matrix by covalent and thermal methods to evaluate drug delivery modulation and properties of the crosslinked blend. Therefore, the entrapment efficiency (EE %), drug loading (DL %) and physicochemical properties of the particles were investigated. The particles presented a spherical shape and a rough surface with a mean diameter of 1.38-2.15 mm (CCA) and 1.56-1.86 mm (thermal crosslink). FTIR investigation indicated the presence of IDM in the particles and X-ray pattern showed the maintenance of crystallinity of IDM. The in vitro release in acidic medium (pH 1.2) and phosphate buffer saline solution (pH 6.8) was 1.23-6.81 % and 81-100 %, respectively. Considering the results, the formulations remained stable after 6 months. The Weibull equation was adequately fitted for all formulations and a diffusion mechanism, swelling and relaxation of chain were observed. IDM-loaded k-carrageenan/sericin/CMC increases cell viability (> 75 % for neutral red and > 81 % for MTT). Finally, all formulations present gastro-resistance, pH response and altered release and have the potential to be used as drug delivery careers.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
10
|
Mefenamic acid modified-release by encapsulation in a k-carrageenan/sericin blend. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers (Basel) 2022; 14:polym14194189. [PMID: 36236137 PMCID: PMC9572459 DOI: 10.3390/polym14194189] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides constitute one of the most important families of biopolymers. Natural polysaccharide-based drug delivery systems are of constant interest to the scientific community due to their unique properties: biocompatibility, non-toxicity, biodegradability, and high availability. These promising biomaterials protect sensitive active agents and provide their controlled release in targeted sites. The application of natural polysaccharides as drug delivery systems is also intensively developed by Polish scientists. The present review focuses on case studies from the last few years authored or co-authored by research centers in Poland. A particular emphasis was placed on the diversity of the formulations in terms of the active substance carried, the drug delivery route, the composition of the material, and its preparation method.
Collapse
|