1
|
Odent J, Baleine N, Torcasio SM, Gautier S, Coulembier O, Raquez JM. 3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release. Polymers (Basel) 2024; 16:2502. [PMID: 39274135 PMCID: PMC11398034 DOI: 10.3390/polym16172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of phenylboronic acid is targeted following a two-step reaction. The resulting photocurable phenylboronic acid derivative is accordingly incorporated within bioinert polyhydroxyethyl methacrylate-based hydrogels at varying loadings. The end result is a sub-centimeter scaled 3D-printed bioinert implant that can be remotely activated with 1,2-diols and 1,3-diols such as glucose for on-demand drug administration such as insulin. As a proof of concept, varying glucose concentration from hypoglycemic to hyperglycemic levels readily allow the release of pinacol, i.e., a 1,2-diol-containing model molecule, at respectively low and high rates. In addition, the results demonstrated that adjusting the geometry and size of the 3D-printed part is a simple and suitable method for tailoring the release behavior and dosage.
Collapse
Affiliation(s)
- Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Nicolas Baleine
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Serena Maria Torcasio
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Sarah Gautier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
2
|
Wang M, Zhang M, Bi J, Li J, Hu X, Zhang L, Zhang Y, Wang W, Lin Y, Cheng HB, Wang J. Mitochondrial Targeted Thermosensitive Nanocarrier for Near-Infrared-Triggered Precise Synergetic Photothermal Nitric Oxide Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18252-18267. [PMID: 38581365 DOI: 10.1021/acsami.3c09997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.
Collapse
Affiliation(s)
- Mi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianyi Bi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology 15 North Third Ring Road, Beijing 1000, China
| | - Jincan Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Lina Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Yao Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenli Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Lin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology 15 North Third Ring Road, Beijing 1000, China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Yuan Y, Wang Z, Su S, Lin C, Mi Y, Tan W, Guo Z. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol. Food Chem 2023; 429:136886. [PMID: 37499506 DOI: 10.1016/j.foodchem.2023.136886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
New amphiphilic low molecular weight chitosan-graft-nicotinic acid bearing decyl groups (LCND) was synthesized by two-step reaction and spontaneously assembled into cationic micelle by ultra-sonication method to improve water solubility and photostability properties of α-tocopherol. The chemical structure of LCND was characterized and physical properties of cationic micelle were evaluated. Results displayed that cationic micelle exhibited strong self-assemble ability with nanoscale spherical morphology and showed best loading ability with loading content of 18.50% when the feeding ratio of LCND to α-tocopherol reached 10:3. Meanwhile, the greatly enhanced water solubility, photostability and sustained release behavior of α-tocopherol in cationic micelle were observed. The cumulative release of α-tocopherol in cationic micelle reached up 82.18% within 96 h while free α-tocopherol was completely released within 10 h. Additionally, release kinetics models were also fitted. The LCND cationic micelle could be promising nanocarrier for improving the physicochemical properties of α-tocopherol in food fields.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Conghao Lin
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Yuan Y, Wang Z, Su S, Mi Y, Li Q, Dong F, Tan W, Guo Z. Redox-sensitive self-assembled micelles based on low molecular weight chitosan-lipoic acid conjugates for the delivery of doxorubicin: Effect of substitution degree of lipoic acid. Int J Biol Macromol 2023; 247:125849. [PMID: 37460070 DOI: 10.1016/j.ijbiomac.2023.125849] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'‑carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Fathi R, Mohammadi R. Preparation of pH-responsive magnetic nanocomposite hydrogels based on k-carrageenan/chitosan/silver nanoparticles: Antibacterial carrier for potential targeted anticancer drug delivery. Int J Biol Macromol 2023; 246:125546. [PMID: 37355059 DOI: 10.1016/j.ijbiomac.2023.125546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
This study reports the development of new pH-responsive drug delivery systems that are important for the treatment of cancer. The Mentha plant extract was obtained and then used for the biosynthesis of magnetic Ag bio nanoparticles (M-Ag bio-NPs). They were added in the formulation of hybrid hydrogel of k-carrageenan (k-Cr) and chitosan (CS) toward the synthesis of magnetic nanocomposite hydrogels. Their chemical structure and morphology were characterized by different analyses. Doxorubicin (DOX) was used as a model anticancer drug to study the targeted drug release behavior of the synthesized nanocomposite hydrogels (loading capacity: about 98 %). In vitro drug release studies showed that the release profile was noticeably controlled in a pH-dependent manner (higher drug release at pH 5). The antibacterial assessment confirmed the high antibacterial activity for the synthesized hydrogel against S. aureus (MIC values 39.06 μg/mL) and E. coli (MIC values > 19.53). In-vitro cytotoxicity results (MTT assay) demonstrated good biocompatibility (higher than 88 %) for the blank nanocomposite hydrogels, while DOX-loaded nanocomposite hydrogels showed high toxicity (about 22 % in the concentration of 20 μg/mL) against HeLa cells. The results showed that the present nanocomposite hydrogels can be suggested for potential application as an antibacterial and anticancer carrier.
Collapse
Affiliation(s)
- Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Toncheva-Moncheva N, Dimitrov E, Grancharov G, Momekova D, Petrov P, Rangelov S. Cinnamyl-Modified Polyglycidol/Poly(ε-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol. Pharmaceutics 2023; 15:2128. [PMID: 37631342 PMCID: PMC10459144 DOI: 10.3390/pharmaceutics15082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the development of novel block copolymer nanocarriers of the phytocannabinoid cannabidiol (CBD), designed to enhance the solubility of the drug in water while achieving high encapsulation efficiency and prolonged drug release. Firstly, a well-defined amphiphilic block copolymer consisting of two outer hydrophilic polyglycidol (PG) blocks and a middle hydrophobic block of poly(ε-caprolactone) bearing pendant cinnamyl moieties (P(CyCL-co-CL)) were synthesized by the click coupling reaction of PG-monoalkyne and P(CyCL-co-CL)-diazide functional macroreagents. A non-modified polyglycidol/poly(ε-caprolactone) amphiphilic block copolymer was obtained as a referent system. Micellar carriers based on the two block copolymers were formed via the solvent evaporation method and loaded with CBD following two different protocols-loading during micelle formation and loading into preformed micelles. The key parameters/characteristics of blank and CBD-loaded micelles such as size, size distribution, zeta potential, molar mass, critical micelle concentration, morphology, and encapsulation efficiency were determined by using dynamic and static multiangle and electrophoretic light scattering, transmission electron microscopy, and atomic force microscopy. Embedding CBD into the micellar carriers affected their hydrodynamic radii to some extent, while the spherical morphology of particles was not changed. The nanoformulation based on the copolymer bearing cinnamyl moieties possessed significantly higher encapsulation efficiency and a slower rate of drug release than the non-modified copolymer. The comparative assessment of the antiproliferative effect of micellar CBD vs. the free drug against the acute myeloid leukemia-derived HL-60 cell line and Sezary Syndrome HUT-78 demonstrated that the newly developed systems have pronounced antitumor activity.
Collapse
Affiliation(s)
- Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Georgi Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| |
Collapse
|
7
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
8
|
Preparation and characterization of
pH
and thermally responsive perfluoropolyether acrylate copolymer micelles and investigation its drug‐loading properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Li H, Lin L, Yan R, Chen Z, Wen X, Zeng X, Tao C. Multi-functional Fe3O4@HMPDA@G5-Au core-releasable satellite nano drug carriers for multimodal treatment of tumor cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Jin GW, Rejinold NS, Choy JH. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel) 2022; 14:polym14224839. [PMID: 36432965 PMCID: PMC9696676 DOI: 10.3390/polym14224839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
| | | | - Jin-Ho Choy
- R & D Center, CnPharm Co., Ltd., Seoul 03759, Korea
- Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence:
| |
Collapse
|