1
|
Utrera-Barrios S, Steenackers N, Terryn S, Ferrentino P, Verdejo R, Van Asche G, López-Manchado MA, Brancart J, Hernández Santana M. Unlocking the potential of self-healing and recyclable ionic elastomers for soft robotics applications. MATERIALS HORIZONS 2024; 11:708-725. [PMID: 37997164 DOI: 10.1039/d3mh01312j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In the field of soft robotics, current materials face challenges related to their load capacity, durability, and sustainability. Innovative solutions are required to address these problems beyond conventional strategies, which often lack long-term ecological viability. This study aims to overcome these limitations using mechanically robust, self-healing, and recyclable ionic elastomers based on carboxylated nitrile rubber (XNBR). The designed materials exhibited excellent mechanical properties, including tensile strengths (TS) exceeding 19 MPa and remarkable deformability, with maximum elongations (EB) over 650%. Moreover, these materials showed high self-healing capabilities, with 100% recovery efficiency of TS and EB at 110 °C after 3 to 5 h, and full recyclability, preserving their mechanical performance even after three recycling cycles. Furthermore, they were also moldable and readily scalable. Tendon-driven soft robotic grippers were successfully developed out of ionic elastomers, illustrating the potential of self-healing and recyclability in the field of soft robotics to reduce maintenance costs, increase material durability, and improve sustainability.
Collapse
Affiliation(s)
- S Utrera-Barrios
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - N Steenackers
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - S Terryn
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - P Ferrentino
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, B-1050 Brussels, Belgium
| | - R Verdejo
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - G Van Asche
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - M A López-Manchado
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J Brancart
- Physical Chemistry and Polymer Science (FYSC), Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - M Hernández Santana
- Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
2
|
Cai Y, Wang Y, Long L, Zhou S, Yan L, Zhang J, Zou H. Fabrication of Highly Thermally Resistant and Self-Healing Polysiloxane Elastomers by Constructing Covalent and Reversible Networks. Macromol Rapid Commun 2023; 44:e2300191. [PMID: 37329201 DOI: 10.1002/marc.202300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/14/2023] [Indexed: 06/18/2023]
Abstract
The fabrication of self-healing elastomers with high thermal stability for use in extreme thermal conditions such as aerospace remains a major challenge. A strategy for preparing self-healing elastomers with stable covalent bonds and dynamic metal-ligand coordination interactions as crosslinking sites in polydimethylsiloxane (PDMS) is proposed. The added Fe (III) not only serves as the dynamic crosslinking point at room temperature which is crucial for self-healing performance, but also plays a role as free radical scavenging agent at high temperatures. The results show that the PDMS elastomers possessed an initial thermal degradation temperature over 380 °C and a room temperature self-healing efficiency as high as 65.7%. Moreover, the char residue at 800 °C of PDMS elastomer reaches 7.19% in nitrogen atmosphere, and up to 14.02% in air atmosphere by doping a small amount (i.e., 0.3 wt%) of Fe (III), which is remarkable for the self-healing elastomers that contain weak and dynamic bonds with relatively poor thermal stability. This study provides an insight into designing self-healing PDMS-based materials that can be targeted for use as high-temperature thermal protection coatings.
Collapse
Affiliation(s)
- Yuanbo Cai
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuan Wang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Lu Long
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Shengtai Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Liwei Yan
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Junhua Zhang
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Huawei Zou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Dynamic Chemistry: The Next Generation Platform for Various Elastomers and Their Mechanical Properties with Self-Healing Performance. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Thermodynamics incompatibility-driven covalent crosslinking network in situ phase separation from biomimetic design. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Bhattacharya AB, Parathodika AR, Ganguly D, Naskar K. An investigation on mechanical, electrical, and rheological characteristics of ultra‐high molecular weight (UHMW)‐EPDM/PP blends‐based conductive thermoplastic vulcanizates (CTPVs). POLYM ENG SCI 2022. [DOI: 10.1002/pen.26092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asit Baran Bhattacharya
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | | | - Debabrata Ganguly
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Kinsuk Naskar
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|