1
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Platanić Arizanović L, Gligorijević N, Cvijetić I, Mijatović A, Ristivojević MK, Minić S, Kokić AN, Miljević Č, Nikolić M. Human Hemoglobin and Antipsychotics Clozapine, Ziprasidone and Sertindole: Friends or Foes? Int J Mol Sci 2023; 24:ijms24108921. [PMID: 37240267 DOI: 10.3390/ijms24108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Packed with hemoglobin, an essential protein for oxygen transport, human erythrocytes are a suitable model system for testing the pleiotropic effects of lipophilic drugs. Our study investigated the interaction between antipsychotic drugs clozapine, ziprasidone, sertindole, and human hemoglobin under simulated physiological conditions. Analysis of protein fluorescence quenching at different temperatures and data obtained from the van't Hoff diagram and molecular docking indicate that the interactions are static and that the tetrameric human hemoglobin has one binding site for all drugs in the central cavity near αβ interfaces and is dominantly mediated through hydrophobic forces. The association constants were lower-moderate strength (~104 M-1), the highest observed for clozapine (2.2 × 104 M-1 at 25 °C). The clozapine binding showed "friendly" effects: increased α-helical content, a higher melting point, and protein protection from free radical-mediated oxidation. On the other hand, bound ziprasidone and sertindole had a slightly pro-oxidative effect, increasing ferrihemoglobin content, a possible "foe". Since the interaction of proteins with drugs plays a vital role in their pharmacokinetic and pharmacodynamic properties, the physiological significance of the obtained findings is briefly discussed.
Collapse
Affiliation(s)
| | - Nikola Gligorijević
- Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ilija Cvijetić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Mijatović
- Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
| | | | - Simeon Minić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Čedo Miljević
- Institute of Mental Health, Palmotićeva 37, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics 2023; 15:pharmaceutics15020673. [PMID: 36839995 PMCID: PMC9964937 DOI: 10.3390/pharmaceutics15020673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Therapeutic drug monitoring is a tool for optimising the pharmacological treatment of diseases where the therapeutic effect is difficult to measure or monitor. Therapeutic reference ranges and dose-effect relation are the main requirements for this drug titration tool. Defining and updating therapeutic reference ranges are difficult, and there is no standardised method for the calculation and clinical qualification of these. The study presents a basic model for validating and selecting routine laboratory data. The programmed algorithm was applied on data sets of antidepressants and antipsychotics from three public hospitals in Denmark. Therapeutic analytical ranges were compared with the published therapeutic reference ranges by the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) and in additional literature. For most of the drugs, the calculated therapeutic analytical ranges showed good concordance between the laboratories and to published therapeutic reference ranges. The exceptions were flupentixol, haloperidol, paroxetine, perphenazine, and venlafaxine + o-desmethyl-venlafaxine (total plasma concentration), where the range was considerably higher for the laboratory data, while the calculated range of desipramine, sertraline, ziprasidone, and zuclopenthixol was considerably lower. In most cases, we identified additional literature supporting our data, highlighting the need of a critical re-examination of current therapeutic reference ranges in Denmark. An automated approach can aid in the evaluation of current and future therapeutic reference ranges by providing additional information based on big data from multiple laboratories.
Collapse
|
4
|
Lin SK. Racial/Ethnic Differences in the Pharmacokinetics of Antipsychotics: Focusing on East Asians. J Pers Med 2022; 12:1362. [PMID: 36143147 PMCID: PMC9504618 DOI: 10.3390/jpm12091362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Empirical clinical studies have suggested that East Asian patients may require lower dosages of psychotropic drugs, such as antipsychotics, lithium, and antidepressants, than non-Asians. Both the pharmacokinetic and pharmacodynamic properties of a drug can affect the clinical response of an illness. The levels of antipsychotics used for the treatment of schizophrenia may affect patient clinical responses; several factors can affect these levels, including patient medication adherence, body weight (BW) or body mass index, smoking habits, and sex. The cytochrome P450 (CYP) system is a major factor affecting the blood levels of antipsychotics because many antipsychotics are metabolized by this system. There were notable genetic differences between people of different races. In this study, we determined the racial or ethnic differences in the metabolic patterns of some selected antipsychotics by reviewing therapeutic drug monitoring studies in East Asian populations. The plasma concentrations of haloperidol, clozapine, quetiapine, aripiprazole, and lurasidone, which are metabolized by specific CYP enzymes, were determined to be higher, under the same daily dose, in East Asian populations than in Western populations.
Collapse
Affiliation(s)
- Shih-Ku Lin
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; ; Tel.: +886-2-27263141 (ext. 1263)
- Department of Psychiatry, Psychiatry Center, Taipei City Hospital, Taipei 110, Taiwan
| |
Collapse
|
5
|
Yuan Y, Li X, Jiang X, Li Z, Ou Y, Li Z. Acne caused by ziprasidone in a young patient with bipolar disorder: A case report. Front Psychiatry 2022; 13:948977. [PMID: 36405919 PMCID: PMC9672335 DOI: 10.3389/fpsyt.2022.948977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ziprasidone is a second-generation antipsychotic drug commonly used to treat schizophrenia and bipolar disorder. Acne is a common inflammatory disease of sebaceous glands in adolescents that is often co-morbid with anxiety and depression, which may reduce treatment compliance. Through unknown mechanisms, ziprasidone may cause a range of inflammatory responses. Whether ziprasidone can cause acne in young patients with bipolar disorder has not been reported. CASE SUMMARY We report a 23-year-old woman with a 5-year history of bipolar disorder who experienced acne during use of ziprasidone. She was admitted to our hospital during 1-month aggravation of her symptoms and was diagnosed with bipolar I disorder (current or most recent episode of depression) with psychotic features. She was given ziprasidone and soon developed acne, which she never had before; the rash worsened substantially when the ziprasidone dose was increased. At the same time, levels of inflammatory factors increased. The rash resolved after ziprasidone therapy was stopped. CONCLUSION When prescribing ziprasidone to young people with bipolar disorder, clinicians should consider the potential for adverse skin reactions. It may be useful to assay levels of inflammatory markers during ziprasidone therapy and adjust the dose if necessary in order to ensure treatment compliance.
Collapse
Affiliation(s)
- Yiwen Yuan
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,People's Hospital of Jianyang City, Chengdu, China
| | - Xiaoqing Li
- West China School of Nursing, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingmei Jiang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Zhixiong Li
- The Third Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Ying Ou
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Zhe Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
6
|
Concentration-Effect Relationships of Psychoactive Drugs and the Problem to Calculate Therapeutic Reference Ranges. Ther Drug Monit 2019; 41:174-179. [PMID: 30883511 DOI: 10.1097/ftd.0000000000000582] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite the obvious potential of Therapeutic Drug Monitoring (TDM) as a tool to optimize psychopharmacotherapy, especially treatment with mood-stabilizing, antidepressant and antipsychotic drugs, acceptance of TDM as a routine tool is still limited. A serious scientific argument against the regular use of TDM is the lack of evidence for a concentration-dependent clinical effect. The aim of this review was to highlight methodological problems leading to poor or even negative concentration-effect relationships and to show how therapeutically effective concentrations of psychoactive drugs can be determined using routine TDM databases. METHODS Reports on concentration-effect relationships of psychoactive drugs were analyzed with regard to applied methods. From routine TDM databases of patients who had been treated with antidepressant or antipsychotic drugs and whose improvement was measured by the clinical global impressions scale, mean and median drug concentrations were calculated and compared with reference ranges recommended by TDM guidelines. RESULTS Few fixed-dose studies with adequate design and data analysis demonstrated a correlation between drug concentration and clinical effect for psychoactive drugs. Most studies, however, mostly retrospective analyses of TDM databases, failed to find significant concentration-effect relationships because of flexible dosing. They were not suitable for the determination of therapeutically effective drug concentrations. Using TDM databases of antidepressant and antipsychotic drug concentrations in blood of patients who were categorized as responders by the clinical global impressions score, the interquartile ranges of drug concentrations (25th-75th percent range) can be shown to be very close to the therapeutic reference ranges recommended in guidelines for TDM in psychiatry. CONCLUSIONS This review provides a discussion on why simple correlation analyses of psychoactive drug concentrations in blood and clinical effects are obsolete for flexible-dose studies or TDM databases. TDM databases, however, can and should be used to calculate drug concentrations in blood of patients who had responded to the drugs. Interquartile ranges can be regarded and used as preliminary therapeutic reference ranges.
Collapse
|
7
|
Biesdorf C, Martins FS, Sy SKB, Diniz A. Physiologically-based pharmacokinetics of ziprasidone in pregnant women. Br J Clin Pharmacol 2019; 85:914-923. [PMID: 30669177 DOI: 10.1111/bcp.13872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/29/2018] [Accepted: 01/06/2019] [Indexed: 01/19/2023] Open
Abstract
AIMS Pregnancy is associated with physiological changes that alter the pharmacokinetics (PK) of drugs. The aim of this study was to predict the PK of ziprasidone in pregnant women. METHODS A full physiologically-based pharmacokinetic (PBPK) model of ziprasidone was developed and validated for the non-pregnant population (healthy adults, paediatrics, geriatrics), and this was extended to the pregnant state to assess the change in PK profile of ziprasidone throughout pregnancy. RESULTS The PBPK model successfully predicted the ziprasidone disposition in healthy adult volunteers, wherein the predicted and observed AUC, Cmax and tmax were within the fold-difference of 0.94-1.09, 0.89-1.40 and 0.80-1.08, respectively. The paediatric and geriatric population, also showed predicted AUC, Cmax and tmax within a two-fold range of the observed values. The simulated exposure in pregnant women using a p-PBPK model showed no significant difference when compared to non-pregnant women. CONCLUSIONS The PBPK model predicted the impact of physiological changes during pregnancy on PK and exposure of ziprasidone, suggesting that dose adjustment is not necessary in this special population.
Collapse
Affiliation(s)
- Carla Biesdorf
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | | | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Brazil
| | - Andrea Diniz
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| |
Collapse
|
8
|
Orsolini L, Tomasetti C, Valchera A, Vecchiotti R, Matarazzo I, Vellante F, Iasevoli F, Buonaguro EF, Fornaro M, Fiengo ALC, Martinotti G, Mazza M, Perna G, Carano A, De Bartolomeis A, Di Giannantonio M, De Berardis D. An update of safety of clinically used atypical antipsychotics. Expert Opin Drug Saf 2016; 15:1329-47. [PMID: 27347638 DOI: 10.1080/14740338.2016.1201475] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The atypical antipsychotic (APs) drugs have become the most widely used agents to treat a variety of psychoses because of their superiority with regard to safety and tolerability profile compared to conventional/'typical' APs. AREAS COVERED We aimed at providing a synthesis of most current evidence about the safety and tolerability profile of the most clinically used atypical APs so far marketed. Qualitative synthesis followed an electronic search made inquiring of the following databases: MEDLINE, Embase, PsycINFO and the Cochrane Library from inception until January 2016, combining free terms and MESH headings for the topics of psychiatric disorders and all atypical APs as following: ((safety OR adverse events OR side effects) AND (aripiprazole OR asenapine OR quetiapine OR olanzapine OR risperidone OR paliperidone OR ziprasidone OR lurasidone OR clozapine OR amisulpride OR iloperidone)). EXPERT OPINION A critical issue in the treatment with atypical APs is represented by their metabolic side effect profile (e.g. weight gain, lipid and glycaemic imbalance, risk of diabetes mellitus and diabetic ketoacidosis) which may limit their use in particular clinical samples. Electrolyte imbalance, ECG abnormalities and cardiovascular adverse effects may recommend a careful baseline and periodic assessments.
Collapse
Affiliation(s)
- L Orsolini
- a School of Life and Medical Sciences , University of Hertfordshire , Hatfield , Herts , United Kingdom.,b Villa San Giuseppe Hospital, Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy.,d Department of Psychiatry and Neuropsychology , University of Maastricht , Maastricht , The Netherlands
| | - C Tomasetti
- c Polyedra Research Group , Teramo , Italy.,e NHS, Department of Mental Health ASL Teramo , Psychiatric Service of Diagnosis and Treatment, Hospital 'Maria SS dello Splendore,' Giulianova , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II,' Napoli , Italy
| | - A Valchera
- b Villa San Giuseppe Hospital, Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy
| | - R Vecchiotti
- b Villa San Giuseppe Hospital, Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy.,d Department of Psychiatry and Neuropsychology , University of Maastricht , Maastricht , The Netherlands
| | - I Matarazzo
- g NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini,' Teramo , Italy.,h Department of Neuroscience and Imaging , University 'G. D'Annunzio,' Chieti , Italy
| | - F Vellante
- g NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini,' Teramo , Italy.,h Department of Neuroscience and Imaging , University 'G. D'Annunzio,' Chieti , Italy
| | - F Iasevoli
- c Polyedra Research Group , Teramo , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II,' Napoli , Italy
| | - E F Buonaguro
- c Polyedra Research Group , Teramo , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II,' Napoli , Italy
| | - M Fornaro
- c Polyedra Research Group , Teramo , Italy.,i New York Psychiatric Institute , Columbia University , New York , NY , USA
| | | | - G Martinotti
- h Department of Neuroscience and Imaging , University 'G. D'Annunzio,' Chieti , Italy
| | - M Mazza
- c Polyedra Research Group , Teramo , Italy.,j Department of Life, Health and Environmental Sciences , University of L'Aquila , L'Aquila , Italy
| | - G Perna
- k Department of Clinical Neurosciences , Hermanas Hospitalarias, FoRiPsi, Villa San Benedetto Menni, Albese con Cassano , Como , Italy.,l Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine , University of Miami , Miami , FL , USA
| | - A Carano
- m NHS, Department of Mental Health ASL Ascoli Piceno, Psychiatric Service of Diagnosis and Treatment , Hospital 'Maria SS del Soccorso,' San Benedetto del Tronto , Italy
| | - A De Bartolomeis
- f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II,' Napoli , Italy
| | - M Di Giannantonio
- i New York Psychiatric Institute , Columbia University , New York , NY , USA
| | - D De Berardis
- c Polyedra Research Group , Teramo , Italy.,g NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini,' Teramo , Italy.,h Department of Neuroscience and Imaging , University 'G. D'Annunzio,' Chieti , Italy
| |
Collapse
|
9
|
Spina E, Hiemke C, de Leon J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin Drug Metab Toxicol 2016; 12:407-22. [DOI: 10.1517/17425255.2016.1154043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Dopamine D₂/₃ occupancy of ziprasidone across a day: a within-subject PET study. Psychopharmacology (Berl) 2013; 228:43-51. [PMID: 23417515 PMCID: PMC3679209 DOI: 10.1007/s00213-013-3012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
RATIONALE Ziprasidone is an atypical antipsychotic recommended to be administered twice daily. OBJECTIVES The purpose of this study was to investigate whether occupancy of the dopamine D2/3 receptors by ziprasidone is maintained across a day employing a within subject design. METHODS Positron emission tomography (PET) scans with [(11)C]-raclopride were performed in 12 patients with schizophrenia while treated with ziprasidone 60 mg twice daily. Each patient completed [(11)C]-raclopride PET scans at 5, 13 and 23 h after the last dose of ziprasidone. Dopamine D2/3 receptor occupancy was estimated with reference to binding potential data of 44 age- and sex-matched control subjects in the caudate, putamen and ventral striatum. RESULTS Eleven scans were available at each time point, and the mean occupancies at 5-, 13- and 23-h scans were 66, 39 and 2 % in the putamen; 62, 35 and -6 % in the caudate; and 68, 47 and 11 % in the ventral striatum, respectively. The time-course of receptor occupancy across the regions indicated an occupancy half-life of 8.3 h. The serum level of ziprasidone associated with 50 % D2/3 receptors occupancy was estimated to be 204 nmol/L (84 ng/ml). Prolactin levels were highest at 5-h post-dose and none showed hyperprolactinemia at 23-h scans. CONCLUSIONS The absence of ziprasidone striatal D2/3 receptor binding 23 h after taking 60 mg under steady-state conditions is consistent with its peripheral half-life. The results support our earlier report that ziprasidone 60 mg administered twice daily appears to be the minimal dose expected to achieve therapeutic central dopamine D2/3 receptor occupancy (i.e. 60 %). CLINICAL TRIALS REGISTRATION 24-Hour Time Course of Striatal Dopamine D2 Receptor Occupancy of Ziprasidone: A PET Study, www.clinicaltrials.gov/ct2/show/NCT00818298 , NCT00818298.
Collapse
|
11
|
Stip E, Zhornitsky S, Moteshafi H, Létourneau G, Stikarovska I, Potvin S, Tourjman V. Ziprasidone for Psychotic Disorders: A Meta-Analysis and Systematic Review of the Relationship Between Pharmacokinetics, Pharmacodynamics, and Clinical Profile. Clin Ther 2011; 33:1853-67. [DOI: 10.1016/j.clinthera.2011.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 11/26/2022]
|
12
|
Effects of antipsychotics with different weight gain liabilities on human in vitro models of adipose tissue differentiation and metabolism. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1884-90. [PMID: 21840366 DOI: 10.1016/j.pnpbp.2011.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 11/20/2022]
Abstract
Weight gain and metabolic abnormalities are serious side effects associated with the use of several second generation antipsychotics (SGA). The adipose tissue has been considered a direct SGA target involved in the development of these adverse effects. Recent studies, mainly using murine cells, have suggested that SGA increase both adipogenesis of preadipocytes and lipid accumulation in mature adipocytes. However, to date there has been little research comparing the effects of antipsychotics with different propensities to induce weight gain on human in vitro models of white adipose tissue neoformation and metabolism. The present study aimed to investigate the effects of antipsychotics either strongly associated with weight gain, such as the SGA clozapine and olanzapine, or not, such as the SGA ziprasidone and the classical antipsychotic haloperidol, on proliferation and adipocyte differentiation of human adipose-derived stem cells (ADSCs) and lipogenesis in human mature adipocytes. Whereas ziprasidone induced elevated levels of cell death during adipogenesis and could not be investigated further, we observed that clozapine, olanzapine and haloperidol had slight stimulatory effects on the transcriptional program of ADSCs adipogenesis. However, the observed changes in adipocyte-specific genes were not accompanied by a significant increase in triglyceride accumulation within differentiated adipocytes. Our data also showed that these three antipsychotics displayed inhibitory effects on the proliferation rates of undifferentiated ADSCs. Regarding mature adipocyte metabolism, we observed that olanzapine slightly inhibited insulin-stimulated lipogenesis at the highest concentration used, and haloperidol exerted the strongest inhibitory effects on both basal and insulin-stimulated lipogenesis. Taken together, our results suggest that a direct and potent effect of clozapine and olanzapine on adipose tissue biology is not an important mechanism by which these SGA induce metabolic disturbances in humans. On the other hand, the haloperidol-mediated downregulation of the lipogenic capacity of human adipose tissue may be a possible mechanism contributing to its lower propensity to induce serious metabolic side effects.
Collapse
|
13
|
Chronic antipsychotic treatment: protracted decreases in phospho-TrkA levels in the rat hippocampus. Int J Neuropsychopharmacol 2010; 13:799-805. [PMID: 20059802 PMCID: PMC4400726 DOI: 10.1017/s1461145709991040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is growing evidence of neurotrophin alterations in neuropsychiatric illnesses such as schizophrenia and further, neurotransmitters known to be adversely affected in schizophrenia (e.g. dopamine) can activate neurotrophin signalling pathways via G protein-coupled receptors. However, it is unclear how the primary therapeutic agents used in schizophrenia affect neurotrophin signalling. This is important given that all currently prescribed antipsychotic drugs serve as ligands at dopamine receptors. In this study, chronic effects of representative conventional and second-generation antipsychotics on nerve growth factor (NGF) receptor levels were assessed in the rat. The results indicated no significant drug effects on TrkA levels in any brain region analysed; however, three of the five antipsychotics analysed significantly decreased phospho-TrkA (i.e. the activated form of the receptor) in the hippocampus. These data indicate that chronic antipsychotic treatment may result in deleterious effects on neurotrophin signalling in an important brain region for information processing and cognition.
Collapse
|