Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A, Lobaccaro JMA. LXRs, SHP, and FXR in Prostate Cancer: Enemies or
Ménage à Quatre With AR?
NUCLEAR RECEPTOR SIGNALING 2018;
15:1550762918801070. [PMID:
30718981 PMCID:
PMC6348739 DOI:
10.1177/1550762918801070]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in
prostate cancer progression. Besides, the link between metabolic disorders and
the risk of developing a prostate cancer has been emerging these last years.
Interestingly, “lipid” nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as
well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid
metabolism, while AR increases it. Moreover, these former orphan nuclear
receptors can regulate androgen levels and modulate AR activity. Thus, it is not
surprising to find such receptors involved in the physiology of prostate. This
review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor
(FXR), and small heterodimeric partner (SHP) in prostate physiology and their
capabilities to interfere with the androgen-regulated pathways by modulating the
levels of active androgen within the prostate. By the use of prostate cancer
cell lines, mice deficient for these nuclear receptors and human tissue
libraries, several authors have pointed out the putative possibility to
pharmacologically target these receptors. These data open a new field of
research for the development of new drugs that could overcome the castration
resistance in prostate cancer, a usual phenomenon in patients.
Collapse