1
|
Demidova EV, Serebriiskii IG, Vlasenkova R, Kelow S, Andrake MD, Hartman TR, Kent T, Virtucio J, Rosen GL, Pomerantz RT, Dunbrack RL, Golemis EA, Hall MJ, Chen DYT, Daly MB, Arora S. Candidate variants in DNA replication and repair genes in early-onset renal cell carcinoma patients referred for germline testing. BMC Genomics 2023; 24:212. [PMID: 37095444 PMCID: PMC10123997 DOI: 10.1186/s12864-023-09310-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Early-onset renal cell carcinoma (eoRCC) is typically associated with pathogenic germline variants (PGVs) in RCC familial syndrome genes. However, most eoRCC patients lack PGVs in familial RCC genes and their genetic risk remains undefined. METHODS Here, we analyzed biospecimens from 22 eoRCC patients that were seen at our institution for genetic counseling and tested negative for PGVs in RCC familial syndrome genes. RESULTS Analysis of whole-exome sequencing (WES) data found enrichment of candidate pathogenic germline variants in DNA repair and replication genes, including multiple DNA polymerases. Induction of DNA damage in peripheral blood monocytes (PBMCs) significantly elevated numbers of [Formula: see text]H2AX foci, a marker of double-stranded breaks, in PBMCs from eoRCC patients versus PBMCs from matched cancer-free controls. Knockdown of candidate variant genes in Caki RCC cells increased [Formula: see text]H2AX foci. Immortalized patient-derived B cell lines bearing the candidate variants in DNA polymerase genes (POLD1, POLH, POLE, POLK) had DNA replication defects compared to control cells. Renal tumors carrying these DNA polymerase variants were microsatellite stable but had a high mutational burden. Direct biochemical analysis of the variant Pol δ and Pol η polymerases revealed defective enzymatic activities. CONCLUSIONS Together, these results suggest that constitutional defects in DNA repair underlie a subset of eoRCC cases. Screening patient lymphocytes to identify these defects may provide insight into mechanisms of carcinogenesis in a subset of genetically undefined eoRCCs. Evaluation of DNA repair defects may also provide insight into the cancer initiation mechanisms for subsets of eoRCCs and lay the foundation for targeting DNA repair vulnerabilities in eoRCC.
Collapse
Affiliation(s)
- Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Kazan Federal University, Kazan, 420008, Russia
| | - Ilya G Serebriiskii
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ramilia Vlasenkova
- Kazan Federal University, Kazan, 420008, Russia
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Simon Kelow
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark D Andrake
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Tiffiney R Hartman
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Arcadia University, Glenside, PA, USA
| | - Tatiana Kent
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James Virtucio
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roland L Dunbrack
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David Y T Chen
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Clinical Genetics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Rosellini M, Marchetti A, Mollica V, Rizzo A, Santoni M, Massari F. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat Rev Urol 2023; 20:133-157. [PMID: 36414800 DOI: 10.1038/s41585-022-00676-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
The therapeutic algorithm of renal cell carcinoma has been revolutionized by the approval of immunotherapy agents by regulatory agencies. However, objective and durable responses are still not observed in a large number of patients, and prognostic and predictive biomarkers for immunotherapy response are urgently needed. Prognostic models used in clinical practice are based on clinical and laboratory factors (such as hypercalcaemia, neutrophil count or Karnofsky Performance Status), but, with progress in molecular biology and genome sequencing techniques, new renal cell carcinoma molecular features that might improve disease course and outcomes prediction have been highlighted. An implementation of current models is needed to improve the accuracy of prognosis in the immuno-oncology era. Moreover, several potential biomarkers are currently under evaluation, but effective markers to select patients who might benefit from immunotherapy and to guide therapeutic strategies are still far from validation.
Collapse
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| |
Collapse
|