1
|
Reilly OT, Brosnan SF, Benítez ME, Phillips KA, Hecht EE. Sex differences in white matter tracts of capuchin monkey brains. J Comp Neurol 2023; 531:1096-1107. [PMID: 37127839 PMCID: PMC10247455 DOI: 10.1002/cne.25480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Nonhuman primates exhibit sexual dimorphism in behavior, suggesting that there could be underlying differences in brain organization and function. Understanding this neuroanatomical variation is critical for enhancing our understanding of the evolution of sex differences in the human brain. Tufted capuchin monkeys (Sapajus [Cebus] apella) represent a phylogenetically diverse taxa of neotropical primates that converge on several behavioral characteristics with humans relevant to social organization, making them an important point of comparison for studying the evolution of sex differences in primates. While anatomical sex differences in gray matter have previously been found in capuchin monkeys, the current study investigates sex differences in white matter tracts. We carried out tract-based spatial statistical analysis on fractional anisotropy images of tufted capuchin monkeys (15 female, 5 male). We found that females showed significantly higher fractional anisotropy than males in regions of frontal-parietal white matter in the right cerebral hemisphere. Paralleling earlier findings in gray matter, male and female fractional anisotropy values in these regions were nonoverlapping. This complements prior work pointing toward capuchin sex differences in limbic circuitry and higher-order visual regions. We propose that these sex differences are related to the distinct socioecological niches occupied by male and female capuchins. Capuchin neuroanatomical sex differences appear to be more pronounced than in humans, which we suggest may relate to human adaptations for prolonged neurodevelopmental trajectories and increased plasticity.
Collapse
Affiliation(s)
- Olivia T Reilly
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Sarah F Brosnan
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Marcela E Benítez
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Anthropology, Emory University, Atlanta, Georgia
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
2
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Riva D. Sex and gender difference in cognitive and behavioral studies in developmental age: An introduction. J Neurosci Res 2021; 101:543-552. [PMID: 34687075 DOI: 10.1002/jnr.24970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
This paper introduces a special issue focused on sex and gender (s/g) cognitive/behavioral differences at developmental ages providing an overview of this multifaceted and debated topic. It will provide a description of the biological systems that are strongly interconnected to generate s/g differences, that is, genetic determinants, sex hormones, differences in brain structure, organization, and/or function, inherited or modifiable under environmental pressures. Developmental studies are rare. Some addressed whether s/g differences in cognitive/behavioral characteristics are evident early in life and are consistent throughout development, entailing that s/g differences can follow the evolving steps in girls and boys in different domains. The data are far from being homogeneous and consistent about s/g difference in language, social skills, and visuo/spatial abilities. The differences are small, often with overlapping performances, similar to what is seen in adulthood. Given that several variables and the interactions between them are implicated, further longitudinal studies adopting adequate assessment tools, very large size multicultural samples stratified in different, well-sized and precise age groups, considering biological and sociocultural variables, are needed. Due to the complexity of the issue, there is still the need to support and adopt an s/g difference approach also in cognitive and behavioral studies at developmental ages. Finally, these studies have not only scientific importance and relevant cultural, anthropological, and social implications, but are also useful for pedagogical programming as well as for the study of the different susceptibility to develop CNS diseases and consequently to promote different therapies and treatments.
Collapse
Affiliation(s)
- Daria Riva
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Fondazione Pierfranco e Luisa Mariani, Milano, Italy.,Fondazione Together To Go, Milano, Italy
| |
Collapse
|
4
|
Jenikejew J, Chaignon B, Linn S, Scheumann M. Proximity-based vocal networks reveal social relationships in the Southern white rhinoceros. Sci Rep 2020; 10:15104. [PMID: 32934303 PMCID: PMC7492360 DOI: 10.1038/s41598-020-72052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Vocal communication networks can be linked to social behaviour, allowing a deeper understanding of social relationships among individuals. For this purpose, the description of vocal dyads is fundamental. In group-living species, this identification is based on behavioural indicators which require a high level of reactivity during social interactions. In the present study, we alternatively established a proximity-based approach to investigate whether sex-specific differences in vocal communication reflect social behaviour in a species with rather loose social associations and low levels of reactivity: the Southern white rhinoceros (Ceratotherium simum simum). We performed audio- and video recordings of 30 captive animals from seven groups. Vocal networks for the four most common call types were constructed by considering conspecifics at close distance (≤ 1 body length) to the sender as potential receivers. The analysis of the resulting unidirectional structures showed that not only the sex of the sender but also the sex of the potential receiver, the quality of social interactions (affiliative or agonistic) as well as association strength predict the intensity of vocal interactions between group members. Thus, a proximity-based approach can be used to construct vocal networks providing information about the social relationships of conspecifics-even in species with loose social associations where behavioural indicators are limited.
Collapse
Affiliation(s)
- Julia Jenikejew
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | | | | | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
5
|
DeCasien AR, Higham JP. Relative Cerebellum Size Is Not Sexually Dimorphic across Primates. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:93-101. [PMID: 32791505 DOI: 10.1159/000509070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Substantive sex differences in behavior and cognition are found in humans and other primates. However, potential sex differences in primate neuroanatomy remain largely unexplored. Here, we investigate sex differences in the relative size of the cerebellum, a region that has played a major role in primate brain evolution and that has been associated with cognitive abilities that may be subject to sexual selection in primates. METHODS We compiled individual volumetric and sex data from published data sources and used MCMC generalized linear mixed models to test for sex effects in relative cerebellar volume while controlling for phylogenetic relationships between species. Given that the cerebellum is a functionally heterogeneous structure involved in multiple complex cognitive processes that may be under selection in males or females within certain species, and that sexual selection pressures vary so greatly across primate species, we predicted there would be no sex difference in the relative size of the cerebellum across primates. RESULTS Our results support our prediction, suggesting there is no consistent sex difference in relative cerebellum size. CONCLUSION This work suggests that the potential for sex differences in relative cerebellum size has been subject to either developmental constraint or lack of consistent selection pressures, and highlights the need for more individual-level primate neuroanatomical data to facilitate intra- and inter-specific study of brain sexual dimorphism.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, New York, USA, .,New York Consortium in Evolutionary Primatology, New York, New York, USA,
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
6
|
Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J 2019; 60:141-149. [PMID: 31044585 PMCID: PMC6509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 10/12/2023] Open
Abstract
Perhaps due to different roles they have had in social groups during evolution, men and women differ in their verbal abilities. These differences are also (if not even more) present in children, both in the course of typical and pathological development. Beside the fact that girls have a well-documented advantage in early language development, almost all developmental disorders primarily affecting communication, speech, and language skills are more frequent in boys. The sex-related difference in the prevalence of these disorders is especially pronounced in autism spectrum disorder (1 girl for each 4-5 boys is affected). The aim of this review is to present the sex differences in typical communication and language development and in the prevalence of communication-related neurodevelopmental disorders. Also, a special focus is put on data from the field of neuroscience that might provide insight into the neurobiological mechanisms that can add to the understanding of this phenomenon. We argue that the functional organization of the female brain gives women an inherent advantage in the acquisition of communication and language system over men.
Collapse
Affiliation(s)
| | - Maja Cepanec
- Maja Cepanec, Faculty of Education and Rehabilitation Sciences, Borongajska cesta 83f, 10000 Zagreb, Croatia,
| |
Collapse
|
7
|
Arlet ME, Veromann LL, Mänd R, Lemasson A. Call rates of mothers change with maternal experience and with infant characteristics in free-ranging gray-cheeked mangabeys. Am J Primatol 2016; 78:983-91. [PMID: 27273714 DOI: 10.1002/ajp.22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/09/2022]
Abstract
Studies have shown that becoming a mother triggers important social changes within females, according to both social experience and infant characteristics, showing different maternal concerns. But how this impacts call usage has been far less studied. Based on 6 months of observations of five free-ranging groups of gray-cheeked mangabeys, we investigated variations in the production of three call types (contact, excitement, and alarm calls) in 29 females of different ages, dominance ranks, and infant rearing experiences: 15 females with infants of different ages and sexes, and 14 females without infants. We found that in females with infants-both maternal and infant characteristics influenced call production in a call type-dependent way. Females produced contact calls at a higher rate during the first month of infant age and after weaning when infants start to move away. Mothers of daughters produced more contact calls than mothers of sons. More excitement calls were recorded for first-time and young mothers and for females with young infants, while alarm call rates were not influenced by any of these factors. Increased mother-infant spatial separation enhanced only contact and excitement call rates. Finally, we found that females with infants vocalized much more than females without infants. Our results contribute to the current debate about the social factors responsible for the flexibility of call usage in nonhuman primates and open new lines for research on mothering behavior in forest-dwelling species. Am. J. Primatol. 78:983-991, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Małgorzata E Arlet
- Université de Rennes 1, Ethologie animale et humaine, UMR 6552 - CNRS, Paimpont, France.,School of Biology, Indian Institute of Science, Education and Research, Thiruvananthapuram, Thiruvananthapuram, India
| | - Linda-Liisa Veromann
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Raivo Mänd
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Alban Lemasson
- Université de Rennes 1, Ethologie animale et humaine, UMR 6552 - CNRS, Paimpont, France.,Institut universitaire de France, Paris, France
| |
Collapse
|
8
|
Katsu N, Yamada K, Nakamichi M. Function of grunts, girneys and coo calls of Japanese macaques (Macaca fuscata) in relation to call usage, age and dominance relationships. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated how the context of the production of vocalizations used in social interactions among Japanese macaques (Macaca fuscata) affects their outcome. We focused on a variety of soft vocalizations, including three acoustically distinct call types: grunts, girneys, and coo calls. We predicted that call outcomes would be influenced by call combinations and exchanges, and by the relationship between the caller and the recipient. We observed social interactions among female Japanese macaques, and found that individuals were less likely to initiate agonistic behaviour when they emitted calls. Call exchanges and call combinations increased the occurrence of affiliative interactions. The probability of affiliative interaction following a given type of call differed according to the relationship between the caller and the recipient. These findings suggest that recipients interpret these calls within a social context; they also demonstrate the existence of complex communicative abilities that integrate vocalizations and context in these monkeys.
Collapse
Affiliation(s)
- Noriko Katsu
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Japanese Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayuki Nakamichi
- Japanese Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
9
|
Wolf S, Chittka L. Male bumblebees, Bombus terrestris, perform equally well as workers in a serial colour-learning task. Anim Behav 2016; 111:147-155. [PMID: 26877542 PMCID: PMC4712640 DOI: 10.1016/j.anbehav.2015.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The learning capacities of males and females may differ with sex-specific behavioural requirements. Bumblebees provide a useful model system to explore how different lifestyles are reflected in learning abilities, because their (female but sterile) workers and males engage in fundamentally different behaviour routines. Bumblebee males, like workers, embark on active flower foraging but in contrast to workers they have to trade off their feeding with mate search, potentially affecting their abilities to learn and utilize floral cues efficiently during foraging. We used a serial colour-learning task with freely flying males and workers to compare their ability to flexibly learn visual floral cues with reward in a foraging scenario that changed over time. Male bumblebees did not differ from workers in both their learning speed and their ability to overcome previously acquired associations, when these ceased to predict reward. In all foraging tasks we found a significant improvement in choice accuracy in both sexes over the course of the training. In both sexes, the characteristics of the foraging performance depended largely on the colour difference of the two presented feeder types. Large colour distances entailed fast and reliable learning of the rewarding feeders whereas choice accuracy on highly similar colours improved significantly more slowly. Conversely, switching from a learned feeder type to a novel one was fastest for similar feeder colours and slow for highly different ones. Overall, we show that behavioural sex dimorphism in bumblebees did not affect their learning abilities beyond the mating context. We discuss the possible drivers and limitations shaping the foraging abilities of males and workers and implications for pollination ecology. We also suggest stingless male bumblebees as an advantageous alternative model system for the study of pollinator cognition.
Collapse
Affiliation(s)
- Stephan Wolf
- Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, U.K
| | - Lars Chittka
- Department of Experimental and Biological Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, U.K
| |
Collapse
|
10
|
|
11
|
Age- and sex-dependent contact call usage in Japanese macaques. Primates 2013; 54:283-91. [PMID: 23455845 DOI: 10.1007/s10329-013-0347-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
The question of the flexibility of nonhuman primate vocal communication remains open today, especially due to early evidence of innately guided vocal production. However, socially determined flexibility can be found when the debate is moved from vocal structure to vocal usage. While increasing evidence shows that the audience quality influences the vocal behaviour of nonhuman primates, the impact of the caller's characteristics has been far less studied. Here, we tested the influence of an individual's sex and age on the usage style of contact calls. We recorded contact calls of male and female Japanese macaques and compared the vocal usage styles of approximately 1-year-old juveniles with those of adults at various ages. We found, first, important differences in call usage style between juveniles and adults, the latter forming temporally ruled vocal exchanges respecting an interindividual turntaking principle. Moreover, sex differences were substantial in adults but nonexistent in juveniles. Finally, age continued to influence female vocal behaviour during adulthood, whereas dominance rank explained differences between adult males. Two nonexclusive mechanisms can explain this phenomenon, that is, a socially guided development of the appropriate form of calling versus an emotional maturation to control call emission, opening new lines of research on nonhuman primate vocal development of appropriate usages.
Collapse
|
12
|
Gesture Use by Chimpanzees (Pan troglodytes): Differences Between Sexes in Inter- and Intra-Sexual Interactions. Am J Primatol 2013; 75:555-67. [DOI: 10.1002/ajp.22133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 02/06/2023]
|