1
|
Rizk M, Dubois M, Elahi S, Ghazal W, Flamant R, Tordjmane I, Courtin R, Panthier C, Gatinel D, Saad A. Long-Term Follow-Up of Descemet Stripping Only: Data Up to 7 Years Postoperatively. Cornea 2024; 43:1245-1248. [PMID: 38147577 DOI: 10.1097/ico.0000000000003449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE The aim of this study was to report long-term follow-up of eyes undergoing Descemet stripping only (DSO). METHODS This was a retrospective study including 26 eyes of 20 patients undergoing DSO between December 2015 and November 2022. Eligibility criteria included peripheral endothelial cell count (ECC) >1000 cells/mm 2 and symptoms caused by central guttata. Patients underwent a central circular 4-mm descemetorhexis using a reverse Sinskey hook and a pair of descemetorhexis forceps using a peeling technique. Three parameters were measured before surgery and at last follow-up: best-corrected visual acuity (BCVA), central corneal thickness (CCT), and ECC measured centrally and at the periphery. RESULTS The mean age was 73 ± 9 years [52-90 years]. The average follow-up period was 23.7 ± 24.8 months [3-84]. Twenty-two eyes responded to DSO with 20 female eyes (91%) and 2 male eyes (9%). The mean postoperative BCVA improved from 0.3 ± 0.17 logMAR to 0.09 ± 0.13 logMAR ( P value <0.05). The mean postoperative CCT decreased from 588 ± 41 μm to 546 ± 50 μm ( P -value <0.05). The mean postoperative central ECC was 780 ± 257 cells/mm 2 [484-1500]. Peripheral ECC decreased postoperatively (1837 ± 407 cells/mm 2 preoperatively to 864 ± 340 cells/mm 2 postoperatively, P value >0.05). Peripheral endothelial cell polymegathism was stable (average of 26.8% ± 6.8% preoperatively and 30.2% ± 14% postoperatively). Average peripheral endothelial cells polymorphism decreased postoperatively (63.1 ± 20.5% preoperatively to 33% ± 25% postoperatively, P value >0.05). Four eyes did not show improvement after DSO and underwent Descemet membrane endothelial keratoplasty surgery. There were 3 men (75%) and 1 women (25%). The preoperative trend was for nonresponders to have lower BCVA, higher CCT, more abnormal peripheral polymorphism, and polymegathism. CONCLUSIONS The results of this study, with up to 7 years follow up, demonstrate the durability of DSO.
Collapse
Affiliation(s)
- Maria Rizk
- Department of Ophthalmology, Rothschild Foundation Hospital, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Dias Rates ER, Almeida CD, de Paula Fiod Costa E, Jansen de Mello Farias R, Santos-Oliveira R, Rebelo Alencar LM. Evaluation of biophysical alterations in the epithelial and endothelial layer of patients with Bullous Keratopathy. Exp Eye Res 2024; 240:109791. [PMID: 38253307 DOI: 10.1016/j.exer.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
The cornea is a fundamental ocular tissue for the sense of sight. Thanks to it, the refraction of two-thirds of light manages to participate in the visual process and protect against mechanical damage. Because it is transparent, avascular, and innervated, the cornea comprises five main layers: Epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Each layer plays a key role in the functionality and maintenance of ocular tissue, providing unique ultrastructural and biomechanical properties. Bullous Keratopathy (BK) is an endothelial dysfunction that leads to corneal edema, loss of visual acuity, epithelial blisters, and severe pain, among other symptoms. The corneal layers are subject to changes in their biophysical properties promoted by Keratopathy. In this context, the Atomic Force Microscopy (AFM) technique in air was used to investigate the anterior epithelial surface and the posterior endothelial surface, healthy and with BK, using a triangular silicone tip with a nominal spring constant of 0.4 N/m. Six human corneas (n = 6) samples were used for each analyzed group. Roughness data, calculated by third-order polynomial adjustment, adhesion, and Young's modulus, were obtained to serve as a comparison and identification of morphological and biomechanical changes possibly associated with the pathology, such as craters and in the epithelial layer and exposure of a fibrotic layer due to loss of the endothelial cell wall. Endothelial cell membrane area and volume data were calculated, obtaining a relevant comparison between the control and patient. Such results may provide new data on the physical properties of the ocular tissue to understand the physiology of the cornea when it has pathology.
Collapse
Affiliation(s)
- Erick Rafael Dias Rates
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Charles Duarte Almeida
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Elaine de Paula Fiod Costa
- Federal University of Maranhão, HU-UFMA - Hospital Universitário, R. Barão de Itapari, 227 - Centro, São Luís, MA, 65020-070, Brazil
| | | | - Ralph Santos-Oliveira
- Rio de Janeiro State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, Rio de Janeiro, 23070200, Brazil; Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Rio de Janeiro, 21941906, Brazil
| | - Luciana M Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil.
| |
Collapse
|
3
|
Vieira R, Castro C, Coelho J, Mesquita Neves M, Gomes M, Oliveira L. Descemet Stripping Without Endothelial Keratoplasty in Early-Stage Central Fuchs Endothelial Dystrophy: Long-term Results. Cornea 2023; 42:980-985. [PMID: 36731082 DOI: 10.1097/ico.0000000000003131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to report long-term results of Descemet stripping without endothelial keratoplasty (DWEK) associated with phacoemulsification in patients with early-stage central Fuchs endothelial corneal dystrophy. METHODS This is a retrospective study, including all patients submitted to DWEK associated with cataract surgery with a minimum follow-up of 24 months. Included patients had central confluent guttae confirmed with specular microscopy, a clear peripheral endothelium (with a peripheral endothelial count >1500 cells/mm 2 ), and a central pachymetry <600 μm. The main end points were the presence of a clear cornea and time that was needed to achieve transparency, best-corrected visual acuity in logMAR, endothelial central cell count (ECC), and central pachymetry. RESULTS A total of 22 eyes were included with a mean follow-up of 40.8 ± 10.5 months. At baseline, mean central pachymetry was 536 ± 34 mm and 6 eyes had countable ECC (mean 1138 ± 190 cells/mm 2 ). Twenty eyes (90.9%) achieved good corneal transparency 3.2 ± 1.1 months after surgery. There was a significant improvement in logMAR best-corrected visual acuity compared with baseline (0.13 ± 0.10 vs. 0.48 ± 0.24, respectively, P < 0.001). Endothelial central repopulation was observed in all successful cases. Twelve months after DWEK, ECC was 1449 ± 344 cells/mm 2 and 1393 ± 450 cells/mm 2 at the end of follow-up, without a significant decrease between this period ( P = 0.081). Only 2 eyes (9.1%) did not achieve corneal transparency and were submitted to an endothelial keratoplasty. CONCLUSIONS According to our results, DWEK is a safe and effective procedure in selected cases of early-stage central Fuchs endothelial corneal dystrophy. This seems to be a promising technique, delaying or avoiding endothelial transplantation.
Collapse
Affiliation(s)
- Rita Vieira
- Ophthalmology Department of Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
| | | | | | | | | | | |
Collapse
|
4
|
Zhu YT, Tighe S, Chen SL, Zhang Y, Chen SY, Kao WWY, Tseng SCG. Manufacturing of human corneal endothelial grafts. Ocul Surf 2023; 29:301-310. [PMID: 37268293 PMCID: PMC10529356 DOI: 10.1016/j.jtos.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors. METHODS HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, β-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux. RESULTS One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm2, >8 mm diameter), phenotype, and pump function. CONCLUSIONS This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.
Collapse
Affiliation(s)
| | - Sean Tighe
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | | | - Yuan Zhang
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Szu-Yu Chen
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | | |
Collapse
|
5
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
6
|
GSK-3 inhibition reverts mesenchymal transition in primary human corneal endothelial cells. Eur J Cell Biol 2023; 102:151302. [PMID: 36905755 DOI: 10.1016/j.ejcb.2023.151302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Human corneal endothelial cells are organized in a tight mosaic of hexagonal cells and serve a critical function in maintaining corneal hydration and clear vision. Regeneration of the corneal endothelial tissue is hampered by its poor proliferative capacity, which is partially retrieved in vitro, albeit only for a limited number of passages before the cells undergo mesenchymal transition (EnMT). Although different culture conditions have been proposed in order to delay this process and prolong the number of cell passages, EnMT has still not been fully understood and successfully counteracted. In this perspective, we identified herein a single GSK-3 inhibitor, CHIR99021, able to revert and avoid EnMT in primary human corneal endothelial cells (HCEnCs) from old donors until late passages in vitro (P8), as shown from cell morphology analysis (circularity). In accordance, CHIR99021 reduced expression of α-SMA, an EnMT marker, while restored endothelial markers such as ZO-1, Na+/K+ ATPase and N-cadherin, without increasing cell proliferation. A further analysis on RNA expression confirmed that CHIR99021 induced downregulation of EnMT markers (α-SMA and CD44), upregulation of the proliferation repressor p21 and revealed novel insights into the β-catenin and TGFβ pathways intersections in HCEnCs. The use of CHIR99021 sheds light on the mechanisms involved in EnMT, providing a substantial advantage in maintaining primary HCEnCs in culture until late passages, while preserving the correct morphology and phenotype. Altogether, these results bring crucial advancements towards the improvement of the corneal endothelial cells based therapy.
Collapse
|
7
|
De Hoon I, Barras A, Swebocki T, Vanmeerhaeghe B, Bogaert B, Muntean C, Abderrahmani A, Boukherroub R, De Smedt S, Sauvage F, Szunerits S. Influence of the Size and Charge of Carbon Quantum Dots on Their Corneal Penetration and Permeation Enhancing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3760-3771. [PMID: 36645837 DOI: 10.1021/acsami.2c18598] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reaching the corneal endothelium through the topical administration of therapeutic drugs remains a challenge in ophthalmology. Besides, endothelial cells are not able to regenerate, and diseases at this site can lead to corneal blindness. Targeting the corneal endothelium implies efficient penetration through the three corneal layers, which still remains difficult for small molecules. Carbon quantum dots (CQDs) have demonstrated great potential for ocular nanomedicine. This study focuses on the corneal penetration abilities of differently charged CQDs and their use as permeation enhancers for drugs. Excised whole bovine eyes were used as an ex vivo model to investigate corneal penetration of CQDs derived from glucosamine using β-alanine, ethylenediamine, or spermidine as a passivation agent. It was found that negatively charged CQDs have limited corneal penetration ability, while positively charged CQDs derived from glucosamine hydrochloride and spermidine (CQD-S) penetrate the entire corneal epithelium all the way down to the endothelium. CQD-S were shown to enhance the penetration of FITC-dextran 150 kDa, suggesting that they could be used as efficient penetration enhancers for therapeutic delivery to the corneal endothelium.
Collapse
Affiliation(s)
- Inès De Hoon
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Tomasz Swebocki
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Bernd Vanmeerhaeghe
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Bram Bogaert
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Cristina Muntean
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| |
Collapse
|
8
|
So S, Park Y, Kang SS, Han J, Sunwoo JH, Lee W, Kim J, Ye EA, Kim JY, Tchah H, Kang E, Lee H. Therapeutic Potency of Induced Pluripotent Stem-Cell-Derived Corneal Endothelial-like Cells for Corneal Endothelial Dysfunction. Int J Mol Sci 2022; 24:701. [PMID: 36614165 PMCID: PMC9821383 DOI: 10.3390/ijms24010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Corneal endothelial cells (CECs) do not proliferate or recover after illness or injury, resulting in decreased cell density and loss of pump/barrier function. Considering the shortage of donor cornea, it is vital to establish robust methods to generate CECs from induced pluripotent stem cells (iPSCs). We investigated the efficacy and safety of transplantation of iPSC-derived CECs into a corneal endothelial dysfunction (CED) rabbit model. iPSCs were generated from human fibroblasts. We characterized iPSCs by demonstrating the gene expression of the PSC markers OCT4, SOX2, TRA-1-60, and NANOG, teratoma formation, and differentiation into three germ layers. Differentiation of iPSCs into CECs was induced via neural crest cell (NCC) induction. CEC markers were detected using immunofluorescence and gene expression was analyzed using quantitative real-time PCR (qRT-PCR). After culturing iPSC-derived NCCs, we found the expression of zona occludens-1 (ZO-1) and Na+/K+ ATPase and a hexagonal morphology. ATP1A1, COL8A1, and AQP1 mRNA expression was higher in iPSC-derived CECs than in iPSCs and NCCs. We performed an injection of iPSC-derived CECs into the anterior chamber of a CED rabbit model and found improved levels of corneal transparency. We also found increased numbers of ZO-1- and ATP1A1-positive cells in rabbit corneas in the iPSC-derived CEC transplantation group. Usage of the coating material vitronectin (VTN) and fasudil resulted in good levels of CEC marker expression, demonstrated with Western blotting and immunocytochemistry. Combination of the VTN coating material and fasudil, instead of FNC mixture and Y27632, afforded the best results in terms of CEC differentiation's in vitro and in vivo efficacy. Successful transplantation of CEC-like cells into a CED animal model confirms the therapeutic efficacy of these cells, demonstrated by the restoration of corneal clarity. Our results suggest that iPSC-derived CECs can be a promising cellular resource for the treatment of CED.
Collapse
Affiliation(s)
- Seongjun So
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Yoonkyung Park
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Soon Suk Kang
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jongsuk Han
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Whanseo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jin Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eun Ah Ye
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eunju Kang
- Department of Biomedical Science, CHA Advanced Research Institute, College of Life Science and Center for Embryo and Stem Cell Research, CHA University, Seongnam 13488, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
9
|
Ramappa M, Chaurasia S, Mohamed A, Ramya Achanta DS, Mandal AK, Edward DP, Gokhale N, Swarup R, Nischal KK. Selective Endothelialectomy in Peters Anomaly: A Novel Surgical Technique and Its Clinical Outcomes in Children. Cornea 2022; 41:1477-1486. [PMID: 36198649 PMCID: PMC9640272 DOI: 10.1097/ico.0000000000003134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE This study describes the surgical outcomes of selective endothelialectomy in Peters anomaly (SEPA), a relatively new technique to manage Peters anomaly (PA). METHODS This study included 34 eyes of 28 children who had a visually significant posterior corneal defect due to PA and underwent SEPA between 2012 and 2019. A selective endothelialectomy from the posterior corneal defect was performed while preserving Descemet membrane. The primary outcome measure was the resolution of corneal opacification. The secondary outcome measures were functional vision, complications, and risk factors for failure. RESULTS At a mean postoperative follow-up of 0.96 ± 0.20 years, 29 eyes (85.3%) maintained a successful outcome. Mean preoperative and postoperative best-corrected visual acuities were 2.55 ± 0.13 and 1.78 ± 0.13 ( P < 0.0001), respectively. Ambulatory functional visual improvement was seen in 97%, and 23% attained vision ranging between 20/190 and 20/50. Corneal opacification failed to clear in 5 eyes (15%). Risk factors associated with surgical failure were female sex ( P = 0.006), disease severity ( P < 0.0001), glaucoma ( P = 0.001), and additional interventions after SEPA ( P = 0.002). In multivariate analysis, only disease severity (ie, a type 2 PA) was a significant risk factor for the failure of SEPA. There were no sight-threatening complications. CONCLUSIONS SEPA is a safe and effective technique in select cases of posterior corneal defect due to PA. SEPA could be a potential surgical alternative to pediatric keratoplasty or optical iridectomy in children with central corneal opacification smaller than 7 mm due to PA.
Collapse
Affiliation(s)
- Muralidhar Ramappa
- Institute for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute, Hyderabad, India
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
- Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, Hyderabad, India
| | - Sunita Chaurasia
- Institute for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute, Hyderabad, India
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
- Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, Hyderabad, India
| | - Ashik Mohamed
- Institute for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute, Hyderabad, India
- Ophthalmic Biophysics, L V Prasad Eye Institute, Hyderabad, India
| | - Divya Sree Ramya Achanta
- Institute for Rare Eye Diseases and Ocular Genetics, L V Prasad Eye Institute, Hyderabad, India
- The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
- Jasti V Ramanamma Children's Eye Care Center, L V Prasad Eye Institute, Hyderabad, India
| | | | - Deepak Paul Edward
- Department of Ophthalmology and Visual Sciences and Pathology, University of Illinois College of Medicine, Chicago, IL
| | | | | | - Ken K. Nischal
- UPMC Eye Center, Children's Hospital of Pittsburgh, Pittsburgh, PA; and
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
11
|
Vercammen H, Miron A, Oellerich S, Melles GRJ, Ní Dhubhghaill S, Koppen C, Van Den Bogerd B. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea. Transl Res 2022; 248:111-127. [PMID: 35609782 DOI: 10.1016/j.trsl.2022.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Currently, there are very few well-established treatments to stimulate corneal endothelial cell regeneration in vivo as a cure for corneal endothelial dysfunctions. The most frequently performed intervention for a damaged or dysfunctional corneal endothelium nowadays is corneal endothelial keratoplasty, also known as lamellar corneal transplantation surgery. Newer medical therapies are emerging and are targeting the regeneration of the corneal endothelium, helping the patients regain their vision without the need for donor tissue. Alternatives to donor tissues are needed as the aging population requiring transplants, has further exacerbated the pressure on the corneal eye banking system. Significant ongoing research efforts in the field of corneal regenerative medicine have been made to elucidate the underlying pathways and effector proteins involved in corneal endothelial regeneration. However, the literature offers little guidance and selective attention to the question of how to fully exploit these pathways. The purpose of this paper is to provide an overview of wound healing characteristics from a biochemical level in the lab to the regenerative features seen in the clinic. Studying the pathways involved in corneal wound healing together with their key effector proteins, can help explain the effect on the proliferation and migration capacity of the corneal endothelial cells.
Collapse
Affiliation(s)
- Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Gerrit R J Melles
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands; Melles Cornea Clinic Rotterdam, The Netherlands
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van Den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
12
|
Widyaningrum R, Wu YW, Delila L, Lee DY, Wang TJ, Burnouf T. In vitro evaluation of platelet extracellular vesicles (PEVs) for corneal endothelial regeneration. Platelets 2022; 33:1237-1250. [PMID: 35949054 DOI: 10.1080/09537104.2022.2105829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Corneal endothelial cells (CECs) slowly decrease in number with increasing age, which is a clinical issue as these cells have very limited regenerative ability. Therapeutic platelet biomaterials are increasingly used in regenerative medicine and cell therapy because of their safety, cost-effective manufacture, and global availability from collected platelet concentrates (PCs). Platelet extracellular vesicles (PEVs) are a complex mixture of potent bioactive vesicles rich in molecules believed to be instrumental in tissue repair and regeneration. In this study we investigated the feasibility of using a PEVs preparation as an innovative regenerative biotherapy for corneal endothelial dysfunction. The PEVs were isolated from clinical-grade human PC supernatants by 20,000 × g ultracentrifugation and resuspension. PEVs exhibited a regular, fairly rounded shape, with an average size of <200 nm and were present at a concentration of approximately 1011 /mL. PEVs expressed cluster of differentiation 41 (CD41) and CD61, characteristic platelets membrane markers, and CD9 and CD63. ELISA and LC-MS/MS proteomic analyses revealed that the PEVs contained mixtures of growth factors and multiple other trophic factors, as well as proteins related to extracellular exosomes with functional activities associated with cell cadherin and adherens pathways. CECs treated with PEVs showed increased viability, an enhanced wound-healing rate, stronger proliferation markers, and an improved adhesion rate. PEVs did not exert cellular toxicity as evidenced by the maintenance of cellular morphology and preservation of corneal endothelial proteins. These findings clearly support further investigations of PEV biomaterials in animal models for translation as a new CEC regeneration biotherapy.
Collapse
Affiliation(s)
- Rifa Widyaningrum
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Ophthalmology, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada-Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Deng-Yao Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Maurizi E, Merra A, Schiroli D, Ghezzi B, Macaluso C, Pellegrini G. Fluctuations in Corneal Endothelial LAP2 Expression Levels Correlate with Passage Dependent Declines in Their Cell Proliferative Activity. Int J Mol Sci 2022; 23:ijms23105859. [PMID: 35628669 PMCID: PMC9146651 DOI: 10.3390/ijms23105859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
The corneal endothelium is the inner corneal mono-layered epithelium, fundamental for preserving corneal hydration and transparency. However, molecular mechanisms that regulate corneal endothelial cells (CEnCs), in particular regarding their proliferative capacity, have been only partially elucidated. CEnCs are quiescent in vivo and they easily undergo endothelial to mesenchymal transition (EnMT) in vitro. This study aims to analyze CEnCs behavior and expression in vitro, either in sub-confluent growing (S) or confluent (C) CEnCs cultures. Primary rabbit and human CEnCs were cultured and used for RT-PCR, immunofluorescence or western blot analysis. These methods allowed identifying a novel molecular marker, LAP2, that is upregulated in S while downregulated in C human or rabbit CEnCs. Those results were observed for several subsequent passages in culture and this, together with the correlation between ki67 and LAP2 expression, suggested LAP2 as a novel possible indicator for culture ageing. Finally, treatment with FGF and TGFβ in rCEnCs highlighted how LAP2 can vary as the cells regulate their proliferative state. In conclusion, we have identified a novel marker for CEnCs, LAP2, that regulates its expression depending on the cells sub/confluent state and that correlates with CEnCs proliferation.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Correspondence:
| | - Alessia Merra
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy;
| | - Benedetta Ghezzi
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Claudio Macaluso
- Dentistry Centre Lab, University of Parma, 43126 Parma, Italy; (B.G.); (C.M.)
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Holostem Terapie Avanzate S.r.l., 41125 Modena, Italy;
| |
Collapse
|
14
|
Yu AC, Spena R, Fusco F, Dondi R, Myerscough J, Fabbri F, Bovone C, Busin M. Long-Term Outcomes of Two-Piece Mushroom Keratoplasty for Traumatic Corneal Scars. Am J Ophthalmol 2022; 236:20-31. [PMID: 34627739 DOI: 10.1016/j.ajo.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To report the outcomes of 2-piece microkeratome-assisted mushroom keratoplasty (MK) for eyes with full-thickness traumatic corneal scars and otherwise functional endothelium following corneal penetrating injury. DESIGN This was an interventional case series. METHODS In this single-center study, 41 consecutive eyes with traumatic corneal scars that underwent 2-piece microkeratome-assisted mushroom keratoplasty were evaluated. The 2-piece mushroom graft consisted of an anterior lamella 9 mm in diameter and a posterior lamella 6 mm in diameter. Outcome measures were best spectacle-corrected visual acuity (BSCVA), refractive astigmatism (RA), endothelial cell density, and postoperative complication rates. RESULTS Of the 41 total cases, 38 eyes (93%) reached Snellen vision ≥20/100, 36 (88%) reached ≥20/60, 29 (71%) reached ≥20/40, and 13 (32%) reached ≥20/25 2 years following MK. Excluding eyes with vision-impairing comorbidities, baseline logMAR BSCVA (1.41 ± 0.73) significantly improved annually during the first 2 years (P < 0.001), reaching 0.16 ± 0.13 at year 2, which subsequently remained stable up to 10 years (P = .626). The RA exceeded 4.5 diopters in 2 cases (5%) after wound revision for high-degree astigmatism in 5 cases. Endothelial cell loss was 35.1% at 1 year, with an annual decline of 2.9% over 10 years. Elevation in IOP was observed postoperatively in 7 eyes, of which 6 had pre-existing glaucoma. The 10-year cumulative risk for graft rejection and failure was 8.5% and 10%, respectively. CONCLUSION Two-piece microkeratome-assisted MK for traumatic corneal scars can allow excellent visual rehabilitation with relatively stable ECL and low rates of immunologic rejection and graft failure.
Collapse
|
15
|
Parekh M, Pedrotti E, Viola P, Leon P, Neri E, Bosio L, Bonacci E, Ruzza A, Kaye SB, Ponzin D, Ferrari S, Romano V. Factors Affecting the Success Rate of Preloaded Descemet Membrane Endothelial Keratoplasty With Endothelium-Inward Technique: A Multicenter Clinical Study. Am J Ophthalmol 2022; 241:272-281. [PMID: 35288072 DOI: 10.1016/j.ajo.2022.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate factors affecting the outcomes of preloaded Descemet membrane endothelial keratoplasty (pl-DMEK) with endothelium-inward. DESIGN Retrospective clinical case series and a comparative tissue preparation study. METHODS Participants: Fifty-five donor tissues for ex vivo study and 147 eyes of 147 patients indicated with Fuchs endothelial dystrophy or pseudophakic bullous keratopathy with or without cataract. INTERVENTION Standardized DMEK peeling was performed with 9.5-mm-diameter trephination followed by second trephination for loading the graft (8.0-9.5 mm diameter). The tissues were manually preloaded with endothelium-inward and preserved for 4 days or shipped for transplantation. Live and dead assay and immunostaining was performed on ex vivo tissues. For the clinical study, the tissues were delivered using bimanual pull-through technique followed by air tamponade at all the centers. MAIN OUTCOME MEASURES Tissue characteristics, donor and recipient factors, rebubbling rate, endothelial cell loss (ECL), and corrected distance visual acuity (CDVA) at 3, 6, and 12 months. RESULTS At day 4, significant cell loss (P = .04) was observed in pl-DMEK with loss of biomarker expression seen in prestripped and pl-DMEK tissues. Rebubbling was observed in 40.24% cases. Average ECL at 3, 6, and 12 months was 45.87%, 40.98%, and 47.54%, respectively. CDVA improved significantly at 3 months postoperation (0.23 ± 0.37 logMAR) (P < .01) compared to the baseline (0.79 ± 0.61 logMAR). A significant association (P < .05) between graft diameter, preservation time, recipient gender, gender mismatch, and recipient age to rebubbling rate was observed. CONCLUSION Graft loading to delivery time of pl-DMEK tissues in endothelium-inward fashion must be limited to 4 days after processing. Rebubbling rate and overall surgical outcomes following preloaded DMEK can be multifactorial and center-specific.
Collapse
|
16
|
Wang Q, Dou S, Zhang B, Jiang H, Qi X, Duan H, Wang X, Dong C, Zhang BN, Xie L, Cao Y, Zhou Q, Shi W. Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:880-893. [PMID: 35141048 PMCID: PMC8807987 DOI: 10.1016/j.omtn.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022]
Abstract
The corneal endothelium is critical for maintaining corneal clarity by mediating hydration through barrier and pump functions. Progressive loss of corneal endothelial cells during aging has been associated with the development of Fuchs endothelial corneal dystrophy (FECD), one of the main causes of cornea-related vision loss. The mechanisms underlying FECD development remain elusive. Single-cell RNA sequencing of isolated healthy human corneas discovered 4 subpopulations of corneal endothelial cells with distinctive signatures. Unsupervised clustering analysis uncovered nuclear enriched abundant transcript 1 (NEAT1), a long non-coding RNA (lncRNA), as the top expressed gene in the C0-endothelial subpopulation, but markedly downregulated in FECD. Consistent with human corneas, a UVA-induced mouse FECD model validated the loss of NEAT1 expression. Loss of NEAT1 function by an in vivo genetic approach reproduced the exacerbated phenotype of FECD by ablating corneal endothelial cells. Conversely, gain of function by a CRISPR-activated adenoviral delivery system protected corneas from UVA-induced FECD. Our findings provide novel mechanistic insights into the development of FECD, and targeting NEAT1 offers an attractive approach for treating FECD.
Collapse
|
17
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
18
|
Overview of Congenital Corneal Opacities: Clinical Diagnosis, Treatment, and Prognosis. Int Ophthalmol Clin 2022; 62:1-13. [PMID: 34965222 DOI: 10.1097/iio.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
A purified human platelet pellet lysate rich in neurotrophic factors and antioxidants repairs and protects corneal endothelial cells from oxidative stress. Biomed Pharmacother 2021; 142:112046. [PMID: 34426259 DOI: 10.1016/j.biopha.2021.112046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human platelet lysate (HPL) is a complex mixture of potent bioactive molecules instrumental in tissue repair and regeneration. Due to their remarkable safety, cost-effective production, and availability at global level from collected platelet concentrates, HPLs can become a powerful biotherapy for various therapeutic applications, if standardized and carefully validated through pre-clinical and clinical studies. In this work, the possibility to use a tailor-made HPL as a corneal transplant alternative to treat the gradual decrease in the number of corneal endothelial cells (CECs) associated with aging, was evaluated. The HPL preparation was thoroughly characterized using various proteomics tools that revealed a remarkable richness in multiple growth factors and antioxidants. Treatment of B4G12 and BCE C/D-1b CECs with the HPL increased their viability, enhanced the wound closure rate, and maintained cell growth and typical hexagonal morphology. Besides, this HPL significantly protected against tert-butyl hydroperoxide (TBHP)-induced oxidative stress as evidenced by increasing CEC viability, decreased cell death and reactive oxygen species formation, and enhanced antioxidant capacity. Proteomics analysis of treated CECs confirmed that HPL treatment triggered the corneal healing pathway and enhanced oxidative stress. These data strongly support further pre-clinical evaluation of this tailor-made HPL as a novel CEC regeneration biotherapy. HPL treatment may eventually represent a pragmatic and cost-effective alternative to corneal transplant to treat damages of the corneal endothelium which is a major cause of blindness worldwide.
Collapse
|
20
|
Pei W, Chen J, Wu W, Wei W, Yu Y, Feng Y. Comparison of the rabbit and human corneal endothelial proteomes regarding proliferative capacity. Exp Eye Res 2021; 209:108629. [PMID: 34029595 DOI: 10.1016/j.exer.2021.108629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023]
Abstract
The shortage of human donor corneas has raised important concerns about engineering of corneal endothelial cells (CECs) for clinical use. However, due to the limited proliferative capacity of human CECs, driving them into proliferation and regeneration may be difficult. Unlike human CECs, rabbit CECs have a marked proliferative capacity. To clarify the potential reason for this difference, we analysed the proteomes of four human corneal endothelium samples and four rabbit corneal endothelium samples with quantitative label-free proteomics and downstream analysis. We discovered that vitamin and selenocompound metabolism and some signaling pathways such as NF-kappa B signaling pathway differed between the samples. Moreover, TGFβ, PITX2 and keratocan were distinctively expressed in rabbit samples, which might be associated with active proliferation in rabbit CECs. This study illustrates the proteomic differences between human and rabbit CECs and might promote CEC engineering strategies.
Collapse
Affiliation(s)
- Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Chen
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyu Wu
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yun Feng
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
21
|
Oddone F, Roberti G, Posarelli C, Agnifili L, Mastropasqua L, Carnevale C, Micelli Ferrari T, Pace V, Sacchi M, Cremonesi E, Uva M, Menchini M, Brescia L, Figus M. Endothelial Cell Density After XEN Implant Surgery: Short-term Data From the Italian XEN Glaucoma Treatment Registry (XEN-GTR). J Glaucoma 2021; 30:559-565. [PMID: 33813558 DOI: 10.1097/ijg.0000000000001840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
PRECIS XEN implant was associated with low endothelial cell density (ECD) reduction. In fact, when combined with phacoemulsification, the reduction in ECD was similar to that expected after phacoemulsification alone. PURPOSE The purpose of this study was to assess the impact of XEN implant, either alone or in combination with phacoemulsification, on ECD. METHODS Multicenter, prospective, observational study conducted on consecutive open-angle glaucoma patients, who were enrolled in the Italian XEN Glaucoma Treatment Registry and have complete endothelial cell count data at baseline and at 6 months after implantation. The primary endpoint was the mean percentage change in ECD between baseline and month 6. RESULTS The study included 108 open-angle glaucoma eyes (68 in the XEN-solo and 40 eyes in the XEN+phaco groups) and 60 control eyes (phaco-solo group). As compared with baseline, mean (95% confidence interval, CI) ECD reduction was -5.6% (-7.0% to -4.9%), -11.3% (-13.8% to -10.9%), and -13.0% (14.8% to -11.8%) in the XEN-solo, XEN+phaco, and phaco-solo groups, respectively (P=0.0004, <0.0001, and <0.0001, respectively). As compared with the XEN-solo group, the ECD reduction was significantly greater in the XEN+phaco group (mean difference=5.7%; 95% CI: 4.1%-7.3%, P<0.0001) and in the phaco-solo group (mean difference=7.4%; 95% CI: 5.7%-9.1%, P<0.0001). ECD reduction was similar in XEN+phaco and phaco-solo groups (P=0.9). In absolute terms, ECD reduction was significantly greater in the XEN+phaco (mean difference=169±306, P=0.021) and in the phaco-solo (mean difference=192±302, P=0.0022) groups than in the XEN-solo group. CONCLUSIONS The mean ECD reduction 6 months after XEN implantation was low. The ECD reduction in the XEN+phaco group was larger than in the XEN-solo group but was similar to that observed in the phaco-solo group.
Collapse
Affiliation(s)
| | | | - Chiara Posarelli
- Department of Surgical, Medical, Molecular Pathology and of Critical Area, University of Pisa, Pisa
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. D'Annunzio of Chieti-Pescara, Chieti
| | - Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. D'Annunzio of Chieti-Pescara, Chieti
| | | | | | - Vincenzo Pace
- Regional General Hospital F. Miulli of Acquaviva delle Fonti, Bari
| | - Matteo Sacchi
- University Eye Clinic, San Giuseppe Hospital, University of Milan, Milan
| | - Elena Cremonesi
- University Eye Clinic, San Giuseppe Hospital, University of Milan, Milan
| | - Maurizio Uva
- University Hospital "Policlinico Vittorio Emanuele," Catania, Italy
| | - Martina Menchini
- Department of Surgical, Medical, Molecular Pathology and of Critical Area, University of Pisa, Pisa
| | - Lorenza Brescia
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. D'Annunzio of Chieti-Pescara, Chieti
| | - Michele Figus
- Department of Surgical, Medical, Molecular Pathology and of Critical Area, University of Pisa, Pisa
| |
Collapse
|
22
|
Jung B, Lee H, Kim S, Tchah H, Hwang C. Effect of Rho-Associated Kinase Inhibitor and Mesenchymal Stem Cell-Derived Conditioned Medium on Corneal Endothelial Cell Senescence and Proliferation. Cells 2021; 10:1463. [PMID: 34207965 PMCID: PMC8230597 DOI: 10.3390/cells10061463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
This study aims to obtain sufficient corneal endothelial cells for regenerative application. We examined the combinatory effects of Rho-associated kinase (ROCK) inhibitor Y-27632 and mesenchymal stem cell-derived conditioned medium (MSC-CM) on the proliferation and senescence of rabbit corneal endothelial cells (rCECs). rCECs were cultured in a control medium, a control medium mixed with either Y-27632 or MSC-CM, and a combinatory medium containing Y-27632 and MSC-CM. Cells were analyzed for morphology, cell size, nuclei/cytoplasmic ratio, proliferation capacity and gene expression. rCECs cultured in a combinatory culture medium showed a higher passage number, cell proliferation, and low senescence. rCECs on collagen type I film showed high expression of tight junction. The cell proliferation marker Ki-67 was positively stained either in Y-27632 or MSC-CM-containing media. Genes related to cell proliferation resulted in negligible changes in MKI67, CIP2A, and PCNA in the combinatory medium, suggesting proliferative capacity was maintained. In contrast, all of these genes were significantly downregulated in the other groups. Senescence marker β-galactosidase-positive cells significantly decreased in either MSC-CM and/or Y-27632 mixed media. Senescence-related genes downregulated LMNB1 and MAP2K6, and upregulated MMP2. Cell cycle checkpoint genes such as CDC25C, CDCA2, and CIP2A did not vary in the combinatory medium but were significantly downregulated in either ROCK inhibitor or MSC-CM alone. These results imply the synergistic effect of combinatory culture medium on corneal endothelial cell proliferation and high cell number. This study supports high potential for translation to the development of human corneal endothelial tissue regeneration.
Collapse
Affiliation(s)
- Boyoung Jung
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Sumi Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Hungwon Tchah
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Department of Ophthalmology, Asan Medical Center, Seoul 05505, Korea
| | - Changmo Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
23
|
Parekh M, Ramos T, O’Sullivan F, Meleady P, Ferrari S, Ponzin D, Ahmad S. Human corneal endothelial cells from older donors can be cultured and passaged on cell-derived extracellular matrix. Acta Ophthalmol 2021; 99:e512-e522. [PMID: 32914525 DOI: 10.1111/aos.14614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the effect of culturing human corneal endothelial cells (HCEnCs) from older donors on extracellular matrix (ECM) derived from human corneal endothelial cell line (HCEC-12). METHODS HCEC-12 cells were cultured on lab-tek chamber slides for 9 days. Upon confluence, the cells were ruptured using ammonium hydroxide leaving the released ECM on the slide surface which was visualized using scanning electron microscope (SEM). HCEnCs from old aged donor tissues (n = 40) were isolated and cultured on either fibronectin-collagen (FNC) or HCEC-12 ECM at passage (P) 0. At subsequent passages (P1 and P2), cells were sub-cultured on FNC and ECM separately. Live/dead analysis and tight junction using ZO-1 staining were used to record percentage viability and morphological changes. The protein composition of HCEC-12 ECM was then analysed using liquid chromatography-mass spectrometry. RESULTS SEM images showed long fibrillar-like structures and a fully laid ECM upon confluence. HCEnCs cultured from older donor tissues on this ECM showed significantly better proliferation and morphometric characteristics at subsequent passages. Out of 1307 proteins found from the HCEC-12 derived ECM, 93 proteins were evaluated to be matrix oriented out of which 20 proteins were exclusively found to be corneal endothelial specific. CONCLUSIONS ECM derived from HCEC-12 retains protein and growth factors that stimulate the growth of HCEnCs. As the current clinical trials are from younger donors that are not available routinely for cell culture, HCEnCs from older donors can be cultured on whole ECM and passaged successfully.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology University College London London UK
| | - Tiago Ramos
- Institute of Ophthalmology University College London London UK
| | | | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology University College London London UK
- Moorfields Eye Hospital NHS Foundation Trust London UK
| |
Collapse
|
24
|
Parker J, Dockery P, Preda-Naumescu A, Jager M, van Dijk K, Dapena I, Melles G. Descemet Membrane Endothelial Keratoplasty and Bowman Layer Transplantation: An Anatomic Review and Historical Survey. Ophthalmic Res 2021; 64:532-553. [PMID: 33761502 DOI: 10.1159/000516093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
For nearly a century, the definitive treatment of many corneal dystrophies and ectactic disorders was limited to penetrating keratoplasty, but over the past 2 decades, a surge of surgical innovation has propelled the treatment of many corneal diseases to more targeted approaches with significantly better visual outcomes. Anterior stromal diseases were first changed through endothelial-sparing techniques, such as deep anterior lamellar keratoplasty, but have more recently transitioned to stromal-sparing approaches. Ultraviolet corneal crosslinking strengthens the cornea and halts progression of keratoconus in >90% of cases. Intracorneal ring segment and corneal allogenic ring segment implantation offer methods to flatten ectatic corneas. However, Bowman layer transplantation - inlay and more recently onlay techniques - has shown promise for treating advanced keratoconus and preventing keratoplasty. The advent of endothelial keratoplasty radically changed the treatment of corneal endothelial dysfunction, and Descemet membrane endothelial keratoplasty specifically offers an average postoperative visual acuity of 20/25 (0.8) with only 8.8% of grafts requiring retransplantation in the first 5 years. Here, we review the rapid innovations for surgical treatment of corneal diseases, spanning from endothelial keratoplasty and endothelial regeneration to anterior lamellar keratoplasty and stromal augmentation, highlighting key steps which may be moving us closer to a "postkeratoplasty" world.
Collapse
Affiliation(s)
- Jack Parker
- Parker Cornea, Birmingham, Alabama, USA.,Netherlands Institute for Innovative Ocular Surgery- USA (NIIOS-USA), San Diego, California, USA
| | - Philip Dockery
- Parker Cornea, Birmingham, Alabama, USA.,Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Ana Preda-Naumescu
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Martine Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Korine van Dijk
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| | - Gerrit Melles
- Parker Cornea, Birmingham, Alabama, USA.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Abstract
PURPOSE Autologous hemoderivative eye drops have a role in the management of persistent epithelial defects (PEDs), but their use may be limited by cost and availability. Finger-prick autologous blood (FAB) treatment uses whole capillary blood, obtained from a sterilized fingertip, as an alternative form of hemoderivative eye drop therapy. To date, 1 report has described the safe and effective use of FAB for dry eye and PEDs. We report the results of 10 eyes (10 patients) treated with FAB for PEDs. METHODS Ten patients with PEDs in 1 eye for a mean of 259 ± 201 days due to diabetic neurotrophic keratopathy (n = 3), herpetic keratitis (n = 3), postpenetrating keratoplasty (n = 1), keratoconjunctivitis sicca (n = 1), postradiotherapy (n = 1), and neuropathic ulcer (n = 1) were treated with FAB 4 times a day for 28 days in addition to conventional therapies. All patients had been unsuccessfully treated with conventional therapy before commencing on FAB. None of the patients had received any surgical treatment for PED. RESULTS At day 28, the PED had healed in 60% (n = 6) of the eyes. In 1 eye, the PED reduced in size by half. Thirty percent (n = 3) of patients had incomplete follow-up data at the end of the study. CONCLUSIONS FAB in combination with conventional treatment may be successfully used in the management of refractory PEDs. No adverse effects arising from FAB treatment were observed.
Collapse
|
26
|
Dawood YF, Issa AF, Faraj ES. Impact of surgical experience on early post-operative regional corneal thickness after phacoemulsification. AFRICAN VISION AND EYE HEALTH 2021. [DOI: 10.4102/aveh.v80i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background: Currently, phacoemulsification is a very common cataract surgical procedure in which the lens is emulsified and aspirated from the eye through a small corneal incision.Aim: To compare early regional corneal thickness changes following phacoemulsification done by experienced surgeons versus trainee surgeons.Setting: A prospective cohort study was done at Ibn Al Haitham tertiary eye hospital in Baghdad, Iraq.Methods: The data were collected for 5 months, from 01 March 2018 until 31 July 2018. Adult patients undergoing phacoemulsification and intraocular lens surgery were prospectively evaluated and divided into two groups. Group 1 comprised those operated by experienced surgeons, whilst Group 2 patients were operated by trainee surgeons. Slit lamp examination and endothelial specular microscopy were assessed with the measurement of central corneal thickness (CCT) and peripheral corneal thickness (PCT), using Scheimpflug imaging (Pentacam).Results: There was a significant statistical difference in post-operative CCT between Groups 1 and 2, being 596.72 ± 50.69 µm compared to 631.54 ± 67.84 µm in Groups 1 and 2, respectively, with a mean difference of 34.82 µm (p = 0.000). More difference was observed in post-operative PCT (148.38 µm) as it was 734.8 ± 88.55 µm in the experienced group, compared to 883.18 ± 128.43 µm in the trainee group (p = 0.005).Conclusion: Phacoemulsification done by trainee surgeons was associated with higher CCT and PCT.
Collapse
|
27
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
28
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18:819-847. [PMID: 33412914 DOI: 10.1080/17425247.2021.1872542] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of ophthalmic formulations able to deliver hydrophilic and hydrophobic drugs to the inner structures of the eye and restore the preocular tear film has been a leading topic of discussion over the last few years. In this sense, liposomes represent a suitable strategy to achieve these objectives in ocular drug delivery.Areas covered: Knowledge of the different physiological and anatomical eye structures, and specially the ocular surface are critical to better understanding and comprehending the characteristics required for the development of topical ophthalmic liposomal formulations. In this review, several features of liposomes are discussed such as the main materials used for their fabrication, basic structure and preparation methods, from already established to novel techniques, allowing the control and design of special characteristics. Besides, physicochemical properties, purification processes and strategies to overcome delivery or encapsulation challenges are also presented. Expert opinion: Regarding ocular drug delivery of liposomes, there are some features that can be redesigned. Specific biocompatible and biodegradable materials presenting therapeutic properties, such as lipidic compounds or polymers significantly change the way of tackling ophthalmic diseases. Besides, liposomes entail an effective, safe and versatile strategy for the treatment of diseases in the clinical practice.
Collapse
Affiliation(s)
- José Javier López-Cano
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Miriam Ana González-Cela-Casamayor
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| |
Collapse
|
29
|
Zhang W, Yu F, Yan C, Shao C, Gu P, Fu Y, Sun H, Fan X. PTEN Inhibition Accelerates Corneal Endothelial Wound Healing through Increased Endothelial Cell Division and Migration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 32667999 PMCID: PMC7425707 DOI: 10.1167/iovs.61.8.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the role of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of corneal endothelial cell (CECs) focusing on proliferation and migration, and to further evaluate the application of PTEN inhibitors in the treatment of corneal endothelial dysfunction in a rat model. Methods Expression of PTEN in human and rat corneal endothelium was determined by immunocytochemistry, western blotting, and ELISA. A small molecular inhibitor of PTEN, bpV(pic), was applied in the culture of human CEC cell line B4G12 and organ-cultured rat cornea in the presence of transforming growth factor beta 2 (TGF-β2). Cell cycle status was detected by flow cytometry and BrdU staining. Subcellular localization for endogenous p27Kip1 was detected by immunocytochemistry and western blotting. Moreover, exogenous transfected YFP-p27Kip1 was observed under a fluorescent microscope. Cell migration was examined with a wound scratch model and transwell invasion assay. Finally, bpV(pic) was intracamerally injected in a rat corneal endothelial injury model. The wound healing process was evaluated by slit lamp biomicroscopy, optical coherence tomography, histological and scanning electron microscope examination. Results The expression of PTEN in human corneal endothelium was higher compared with rat, which we speculate was mostly responsible for the relatively less proliferation capacity of human CEC than rat. PTEN inhibition by bpV(pic) could reverse TGF-β2-induced CEC G1-arrest by alleviating p27Kip1 nuclear accumulation and decreasing total p27Kip1 expression. In addition, bpV(pic) promoted CEC migration, which acted synergistically with TGF-β2. Finally, intracameral injection of bpV(pic) could promote corneal endothelial wound healing in a rat model. Conclusions Our study provided experimental basis for the development of therapeutic agent targeting on PTEN for the treatment of corneal endothelial dysfunction.
Collapse
|
30
|
Dawood YF, Issa AF, Faraj ES. Impact of surgical experience on early post-operative regional corneal thickness after phacoemulsification. AFRICAN VISION AND EYE HEALTH 2020. [DOI: 10.4102/aveh.v79i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Maurizi E, Schiroli D, Zini R, Limongelli A, Mistò R, Macaluso C, Pellegrini G. A fine-tuned β-catenin regulation during proliferation of corneal endothelial cells revealed using proteomics analysis. Sci Rep 2020; 10:13841. [PMID: 32796906 PMCID: PMC7427785 DOI: 10.1038/s41598-020-70800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal endothelial (CE) dysfunction is the main indication for corneal transplantation, an invasive procedure with several limitations. Developing novel strategies to re-activate CE regenerative capacity is, therefore, of fundamental importance. This goal has proved to be challenging as corneal endothelial cells (CEnC) are blocked in the G0/G1 phase of the cell cycle in vivo and, albeit retaining proliferative capacity in vitro, this is further hindered by endothelial-to-mesenchymal transition. Herein we investigated the mechanisms regulating CEnC proliferation in vitro. Comparing the proteome of non-proliferating (in vivo-G0/G1) and proliferating (in vitro-G2/M) rabbit CEnC (rCEnC), 77 proteins, out of 3,328 identified, were differentially expressed in the two groups (p < 0.005). Literature and Gene Ontology analysis revealed β-catenin and transforming growth factor (TGF-β) pathways to be correlated with the identified proteins. Treatment of rCEnC with a β-catenin activator and inhibitor showed that β-catenin activation was necessary during rCEnC proliferation, but not sufficient for its induction. Furthermore, both pro-proliferative activity of basic fibroblast growth factor and anti-proliferative effects of TGF-β were regulated through β-catenin. Overall, these results provide novel insights into the molecular basis underlying the proliferation process that CEnC re-activate in vitro, consolidating the role of β-catenin and TGF-β.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy.
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Claudio Macaluso
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
33
|
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion. Sci Rep 2020; 10:7402. [PMID: 32366916 PMCID: PMC7198491 DOI: 10.1038/s41598-020-64311-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion.
Collapse
|
34
|
Sheheitli H, Groth SL, Chang TCP, Hodapp EA, Grajewski AL. A Novel Surgical Approach in the Management of Peters Anomaly With Glaucoma. J Pediatr Ophthalmol Strabismus 2020; 57:e25-e29. [PMID: 32176806 DOI: 10.3928/01913913-20200204-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Treatment options for Peters anomaly vary depending on the degree of corneal and lenticular involvement. The authors report a novel surgical approach for patients with type I Peters anomaly and glaucoma. It involves ab externo circumferential trabeculotomy, simultaneous lysis of iridocorneal adhesions at the time of trabecular cleavage, and optical iridectomy. [J Pediatr Ophthalmol Strabismus. 2020;57:e25-e29.].
Collapse
|
35
|
Maugeri G, D'Amico AG, Amenta A, Saccone S, Federico C, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, Longo A, D'Agata V. Protective effect of PACAP against ultraviolet B radiation-induced human corneal endothelial cell injury. Neuropeptides 2020; 79:101978. [PMID: 31791645 DOI: 10.1016/j.npep.2019.101978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The human cornea, a sophisticated example of natural engineering, is composed in the innermost layer by endothelial cells maintaining stromal hydration and clarity. Different types of insults, including ultraviolet (UV) radiations, can lead to corneal opacity due to their degenerative and limited proliferative capability. In our previous studies, we have shown the protective effects of pituitary adenylate cyclase activating polypeptide (PACAP) in human corneal endothelial cells (HCECs), after growth factors deprivation. The aim of the present work has been to investigate the effect of this peptide on UV-B-induced HCECs injury. The results have shown that UV-B irradiations induced apoptotic cells death and consequently alteration in human corneal endothelial barrier. We found that PACAP treatment significantly increased viability, trans-endothelial electrical resistance and tight junctions expression of HCECs exposed to UV-B insult. In conclusion, data have suggested that this peptide could have protective effect to preserve the physiological state of human corneal endothelium exposed to UV-B damage.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Alessia Amenta
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological, and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Vincenza Bonfiglio
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, Eye Clinic, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy.
| |
Collapse
|
36
|
Lyssek-Boroń A, Krysik K, Kijonka M, Osuch M, Grabarek BO, Dobrowolski D. Changes in the Density of Corneal Endothelial Cells in Elderly Diabetic Patients After Combined Phacovitrectomy and Ex-PRESS Glaucoma Implants. Curr Pharm Biotechnol 2020; 20:1037-1043. [PMID: 31393242 PMCID: PMC7040517 DOI: 10.2174/1389201020666190808154341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Corneal endothelial cells (ECD) are characterized by limited regenerative potential, which is additionally impaired in patients with diabetes. This retrospective study included 27 patients aged 58.1±13.6, 16 female and 11 males, who underwent 23-gauge vitrectomy in combination with cataract surgery (phacovitrectomy) and further Ex-PRESS shunt implantation throughout 2013-2017 at St. Barbara Hospital in Sosnowiec, Poland. METHODS In our study, we distinguished 4 periods: initial period; post phacovitrectomy and removal of oil tamponade; and 3 and 12 months post implantation of the Ex-PRESS shunt. Statistical analysis was performed at the level of statistical significance of p<0.05. It included an analysis of variance (ANOVA) and Tukey's post-hoc test in order to determine the differences in the density of ECD cells/mm2 between the periods of observation. The paired-samples t-Student test was also performed to determine whether the differences in visual acuity values before and after PPV and before and after Ex-PRESS shunt were statistically significant. RESULTS The initial count of ECD cells was 2381.1±249, which decreased to 1872.8±350.7 cell/mm2 and finally to 1677.9±327 at the endpoint. Differences in the density of ECD cells/mm2 were observed to be statistically significant between the periods: after PPV vs. initial number of ECD (p = 0.000138); before 3 months after Ex-PRESS shunt vs. initial number of ECD (p = 0.000138); 12 months after Ex- PRESS shunt vs. initial number of ECD (p = 0000138). Analyzing the changes in visual acuity, we observed a deterioration both before and 3 months after Ex-PRESS shunt (p = 0.007944) and before and after PPV (p = 0.060334). In turn, correlation analysis indicated that there is a statistically significant, moderate, positive relationship. The relationship between visual acuity after Ex-PRESS shunt and ECD cells/mm2 density turned out to be statistically significant (r = +0.521381; p < 0.05). CONCLUSION Regardless of the period of observation and the choice of ophthalmic treatment of diabetic complications, we observed a decrease in the number of ECD cells and a deterioration in visual acuity. It is, therefore, reasonable to provide the patient with complete information about the proposed procedures and to consider the risk-benefit balance.
Collapse
Affiliation(s)
- Anita Lyssek-Boroń
- Department of Ophthalmology with Pediatric Unit, Santa Barbara Hospital-Trauma Centre, Plac Medykow 1, 42-200 Sosnowiec, Poland
| | - Katarzyna Krysik
- Department of Ophthalmology with Pediatric Unit, Santa Barbara Hospital-Trauma Centre, Plac Medykow 1, 42-200 Sosnowiec, Poland
| | - Magdalena Kijonka
- Department of Ophthalmology with Pediatric Unit, Santa Barbara Hospital-Trauma Centre, Plac Medykow 1, 42-200 Sosnowiec, Poland
| | - Mateusz Osuch
- Department of Ophthalmology with Pediatric Unit, Santa Barbara Hospital-Trauma Centre, Plac Medykow 1, 42-200 Sosnowiec, Poland
| | - Beniamin O Grabarek
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Gliwice, Poland.,Department of Molecular Biology, School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Dariusz Dobrowolski
- Department of Ophthalmology with Pediatric Unit, Santa Barbara Hospital-Trauma Centre, Plac Medykow 1, 42-200 Sosnowiec, Poland.,Chair and Clinical Department of Ophthalmology, School of Medicine with a Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
37
|
Li Z, Liu T, Ma J, Guo Q, Ma L, Lv Q, Jiang Y, Wei C, Zhang J. TGF-β induces corneal endothelial senescence via increase of mitochondrial reactive oxygen species in chronic corneal allograft failure. Aging (Albany NY) 2019; 10:3474-3485. [PMID: 30482886 PMCID: PMC6286827 DOI: 10.18632/aging.101659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
The corneal endothelium (CE) dysfunction impairs optical transparency and leads to corneal allograft failure. Morphologically, CE cells are characterized by premature senescence at the late stage of corneal graft. However, the detailed molecular mechanisms are largely unknown. Here we found that transforming growth factor-β (TGF-β) is elevated in the CE of late graft failure. In addition, senescence-associated gene p21 and p16 are increased as well, which is consistent with their elevation upon TGF-β treatment in human corneal endothelial cell B4G12. Furthermore, TGF-β treatment leads to high positive ratio of SA-β-gal, indicating B4G12 cells undergo cellular senescence. Mechanistically, we demonstrated that TGF-β could induce mitochondrial ROS (mtROS) production and mtROS scavenger could rescue CE cell senescence upon TGF-β treatment. Our study provides new evidence that elevated TGF-β plays a crucial role in the CE cell senescence and loss in chronic corneal graft failure, which could be potential targets for clinical treatment.
Collapse
Affiliation(s)
- Zhiyuan Li
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Junwei Ma
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Clinical Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Ma
- Department of Child Health Care, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiulan Lv
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Jiang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Abstract
Penetrating keratoplasty was the only therapeutic choice for the treatment of corneal endothelial decompensation until the introduction of evolutional endothelial keratoplasties, namely Descemet's stripping automated endothelial keratoplasty (DSAEK) and Descemet's membrane endothelial keratoplasty (DMEK). Although now in widespread use, DSAEK and DMEK still have associated problems, such as difficulty of the surgical technique, acute and chronic cell loss, and shortage of donor corneas. Therefore, regeneration of the corneal endothelium by tissue engineering techniques is being researched to overcome these problems. The concept of transplantation of cultured corneal endothelial cells (CECs) was proposed in the 1970s. However, cultivation of human CECs (HCECs) in sufficient quantity and with acceptable quality for clinical use has proven surprisingly difficult, and the development of methods for transplanting cultured HCECs has been necessary. Numerous research groups have developed culture protocols and techniques that are now bringing corneal endothelial regeneration closer to real-world therapy. For instance, we started a clinical trial in 2013 involving the injection of cultured HCECs into the anterior chamber of patients with corneal endothelial decompensation. This review outlines the rapid progression of this research field, including clinical trial results, and is also intended to identify topics that still require further research or discussion.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
39
|
Kampik D, Basche M, Georgiadis A, Luhmann UFO, Larkin DF, Smith AJ, Ali RR. Modulation of Contact Inhibition by ZO-1/ZONAB Gene Transfer-A New Strategy to Increase the Endothelial Cell Density of Corneal Grafts. Invest Ophthalmol Vis Sci 2019; 60:3170-3177. [PMID: 31335954 DOI: 10.1167/iovs.18-26260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endothelial cell density (ECD) is the principal factor determining the success of corneal transplants. Here we explored a strategy to increase corneal ECD in human explants via modulation of the ZO-1/ZONAB pathway. In multiple cell types, ZO-1 maintains G1 cell cycle arrest via cytoplasmic sequestration of the mitosis-inducing transcription factor ZONAB. In this study, we assessed the effects of lentiviral vector-mediated downregulation of ZO-1 or overexpression of ZONAB upon ECD and the integrity of the endothelial monolayer. Methods HIV-based lentiviral vectors were used to deliver either constitutively expressed ZONAB (LNT-ZONAB), or a small hairpin RNA targeting ZO-1 (LNT-shZO1). Human corneal specimens were bisected and each half was exposed to either treatment or control vector. After 1 week in ex vivo culture, effects were assessed by quantitative RT-PCR, immunohistochemistry, and ECD assessment. Results LNT-shZO1 achieved an ∼45% knockdown of ZO-1 mRNA in corneal endothelial cells cultured ex vivo, reduced ZO-1 staining, and did not affect morphologic endothelial monolayer integrity. The proliferative effect of LNT-shZO1 correlated with control ECD but not with donor age. Within a low-ECD cohort an ∼30% increase in ECD was observed. LNT-ZONAB achieved a >200-fold overexpression of ZONAB mRNA, which led to an ∼25% increase in ECD. Conclusions ZO-1 downregulation or ZONAB upregulation increases corneal ECD via interference with contact inhibition and cell cycle control. With further development, such approaches might provide a means for improving ECD in donor corneas before transplantation.
Collapse
Affiliation(s)
- Daniel Kampik
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom.,University Hospital of Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Mark Basche
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ulrich F O Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom.,NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
40
|
Toda M, Yukawa H, Yamada J, Ueno M, Kinoshita S, Baba Y, Hamuro J. In Vivo Fluorescence Visualization of Anterior Chamber Injected Human Corneal Endothelial Cells Labeled With Quantum Dots. ACTA ACUST UNITED AC 2019; 60:4008-4020. [DOI: 10.1167/iovs.19-27788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Munetoyo Toda
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Jun Yamada
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Ophthalmology, Meiji University of Integrative Medicine, Nantan, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
|
42
|
Feasibility of a cryopreservation of cultured human corneal endothelial cells. PLoS One 2019; 14:e0218431. [PMID: 31226131 PMCID: PMC6588235 DOI: 10.1371/journal.pone.0218431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Transparency of the cornea is essential for vision and is maintained by the corneal endothelium. Consequently, corneal endothelial decompensation arising from irreversible damage to the corneal endothelium causes severe vision impairment. Until recently, transplantation of donor corneas was the only therapeutic choice for treatment of endothelial decompensation. In 2013, we initiated clinical research into cell-based therapy involving injection of a suspension of cultured human corneal endothelial cells (HCECs), in combination with Rho kinase inhibitor, into the anterior chamber. The aim of the present study was to establish a protocol for cryopreservation of HCECs to allow large-scale commercial manufacturing of these cells. This study focused on the effects of various cryopreservation reagents on HCEC viability. Screening of several commercially available cryopreservation reagents identified Bambanker hRM as an effective agent that maintained a cell viability of 89.4% after 14 days of cryopreservation, equivalent to the cell viability of 89.2% for non-cryopreserved control cells. The use of Bambanker hRM and HCECs at a similar grade to that used clinically for cell based therapy (passage 3–5 and a cell density higher than 2000 cells/mm2) gave a similar cell density for cryopreserved HCECs to that of non-preserved control HCECs after 28 days of cultivation (2099 cells/mm2 and 2111 cells/mm2, respectively). HCECs preserved using Bambanker hRM grew in a similar fashion to non-preserved control HCECs and formed a monolayer sheet-like structure. Cryopreservation of HCECs has multiple advantages including the ability to accumulate stocks of master cells, to transport HCEC stocks, and to manufacture HCECs on demand for use in cell-based treatment of endothelial decompensation.
Collapse
|
43
|
Zieske JD, Hutcheon AEK, Guo X. Extracellular Vesicles and Cell-Cell Communication in the Cornea. Anat Rec (Hoboken) 2019; 303:1727-1734. [PMID: 31136100 PMCID: PMC6881515 DOI: 10.1002/ar.24181] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
One question that has intrigued cell biologists for many years is, "How do cells interact to influence one another's activity?" The discovery of extracellular vesicles (EVs) and the fact that they carry cargo, which directs cells to undergo changes in morphology and gene expression, has revolutionized this field of research. Little is known regarding the role of EVs in the cornea; however, we have demonstrated that EVs isolated from corneal epithelial cells direct corneal keratocytes to initiate fibrosis. Intriguingly, our data suggest that EVs do not penetrate epithelial basement membrane (BM), perhaps providing a mechanism explaining the importance of BM in the lack of scarring in scrape wounds. Since over 100-million people worldwide suffer from visual impairment as a result of corneal scarring, the role of EVs may be vital to understanding the mechanisms of wound repair. Therefore, we investigated EVs in ex vivo and in vivo-like three-dimensional cultures of human corneal cells using transmission electron microscopy. Some of the major findings were all three major cell types (epithelial, fibroblast, and endothelial cells) appear to release EVs, EVs can be identified using TEM, and EVs appeared to be involved in cell-cell communication. Interestingly, while our previous publication suggests that EVs do not penetrate the epithelial BM, it appears that EVs penetrate the much thicker endothelial BM (Descemet's membrane). These findings indicate the huge potential of EV research in the cornea and wound healing, and suggest that during homeostasis the endothelium and stromal cells are in communication. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Audrey E K Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Hutcheon AEK, Zieske JD, Guo X. 3D in vitro model for human corneal endothelial cell maturation. Exp Eye Res 2019; 184:183-191. [PMID: 30980816 DOI: 10.1016/j.exer.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Corneal endothelium is a cellular monolayer positioned on the Descemet's membrane at the anterior cornea, and it plays a critical role in maintaining corneal clarity. Our present study examines the feasibility of utilizing our 3-dimensional (3D) corneal stromal construct, which consists of human corneal fibroblasts (HCF) and their self-assembled matrix, to observe the development and maturation of human corneal endothelial cells (HCEndoCs) in a co-culture model. Three-dimensional HCF constructs were created by growing the HCFs on Transwell membranes in Eagles' minimum essential medium (EMEM) + 10% FBS + 0.5 mM Vitamin C (VitC) for about 4 weeks. HCEndoCs, either primary (pHCEndoC) or cell line (HCEndoCL), were either seeded in chamber slides, directly on the Transwell membranes, or on the 3D HCF constructs and cultivated for 5 days or 2 weeks. The HCEndoCs that were seeded directly on the Transwell membranes were exposed indirectly to HCF by culturing the HCF on the plate beneath the membrane. Cultures were examined for morphology and ultrastructure using light and transmission electron microscopy (TEM). In addition, indirect-immunofluorescence microscopy (IF) was used to examine tight junction formation (ZO-1), maturation (ALDH1A1), basement membrane formation (Laminin), cell proliferation (Ki67), cell death (caspase-3), and fibrotic response (CTGF). As expected, both pHCEndoCs and HCEndoCLs formed monolayers on the constructs; however, the morphology of the HCEndoCLs appeared to be similar to that seen in vivo, uniform and closely packed, whereas the pHCEndoCs remained elongated. The IF data showed that laminin localization was present in the HCEndoCs' cytoplasm as cell-cell contact increased, and when they were grown in the 3D co-culture, the beginnings of what appears to be a continuous DM-like structure was observed. In addition, in co-cultures, ALDH1A1-positive HCEndoCs were present, ZO-1 expression localized within the tight junctions, minimal numbers of HCEndoCs were Ki67-or Caspase-3-positive, and CTGF was positive in both the HCEndoCs cytoplasm and the matrix of the co-culture. Also, laminin localization was stimulated in HCEndoCs upon indirect stimuli secreted by HCF. The present data suggests our 3D co-culture model is useful for studying corneal endothelium maturation in vitro since the co-culture promotes new DM-like formation, HCEndoCs develop in vivo-like characteristics, and the fibrotic response is activated. Our current findings are applicable to understanding the implications of corneal endothelial injection therapy, such as if the abnormal DM has to be removed from the patient, the newly injected endothelial cells will seed onto the wound area and deposit a new DM-like membrane. However, caution should be observed and as much of the normal DM should be left intact since removal of the DM can cause a posterior stromal fibrotic response.
Collapse
Affiliation(s)
- Audrey E K Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| | - James D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Xiaoqing Guo
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
45
|
Wei X, Luo D, Yan Y, Yu H, Sun L, Wang C, Song F, Ge H, Qian H, Li X, Tang X, Liu P. Kojic acid inhibits senescence of human corneal endothelial cells via NF-κB and p21 signaling pathways. Exp Eye Res 2019; 180:174-183. [DOI: 10.1016/j.exer.2018.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
|
46
|
Gutermuth A, Maassen J, Harnisch E, Kuhlen D, Sauer-Budge A, Skazik-Voogt C, Engelmann K. Descemet's Membrane Biomimetic Microtopography Differentiates Human Mesenchymal Stem Cells Into Corneal Endothelial-Like Cells. Cornea 2019; 38:110-119. [PMID: 30308581 PMCID: PMC6282677 DOI: 10.1097/ico.0000000000001765] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is Available in the Text. Purpose: Loss of corneal endothelial cells (CECs) bears disastrous consequences for the patient, including corneal clouding and blindness. Corneal transplantation is currently the only therapy for severe corneal disorders. However, the worldwide shortages of corneal donor material generate a strong demand for personalized stem cell–based alternative therapies. Because human mesenchymal stem cells are known to be sensitive to their mechanical environments, we investigated the mechanotransductive potential of Descemet membrane–like microtopography (DLT) to differentiate human mesenchymal stem cells into CEC-like cells. Methods: Master molds with inverted DLT were produced by 2-photon lithography (2-PL). To measure the mechanotransductive potential of DLT, mesenchymal stem cells were cultivated on silicone or collagen imprints with DLT. Changes in morphology were imaged, and changes in gene expression of CEC typical genes such as zonula occludens (ZO-1), sodium/potassium (Na/K)-ATPase, paired-like homeodomain 2 (PITX2), and collagen 8 (COL-8) were measured with real-time polymerase chain reaction. At least immunofluorescence analysis has been conducted to confirm gene data on the protein level. Results: Adhesion of MSCs to DLT molded in silicone and particularly in collagen initiates polygonal morphology and monolayer formation and enhances not only transcription of CEC typical genes such as ZO-1, Na/K-ATPase, PITX2, and COL-8 but also expression of the corresponding proteins. Conclusions: Artificial reproduction of Descemet membrane with respect to topography and similar stiffness offers a potential innovative way to bioengineer a functional CEC monolayer from autologous stem cells.
Collapse
Affiliation(s)
- Angela Gutermuth
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Jessika Maassen
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Emely Harnisch
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Daniel Kuhlen
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Alexis Sauer-Budge
- Exponent, Department for Polymer Science & Materials Chemistry, Natick, MA
| | - Claudia Skazik-Voogt
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Katrin Engelmann
- Medical Center for Ophthalmology, Chemnitz, Germany.,Experimental Ophthalmology, Institute of Anatomy Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
47
|
Li G, Zheng J, Gong J, Sameer A, Li X, Zhang Y, Tighe S, Zhu Y, Wang P. Efficacy of Anterior Stromal Puncture Surgery with Corneal Bandage Lens for Bullous Keratopathy. Int J Med Sci 2019; 16:660-664. [PMID: 31217733 PMCID: PMC6566735 DOI: 10.7150/ijms.31669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: To investigate the safety and efficacy of the combination therapy of anterior stromal puncture (ASP) with bandage contact lens for bullous keratopathy (BK). Methods: Twelve cases (12 eyes) with vision acuity no better than light perception were treated with ASP surgery and bandage contact lens. 200 points punctures were made through the corneal epithelium and Bowman's layer vertically, using fine needles. A soft bandage contact lens was applied immediately and removed 2 weeks later. The severity of irrigating symptoms including pain, photophobia and tearing was graded and calculated before treatment and 1, 2, 4, 12 weeks after the surgery, slit-lamp microscope examination was used to quantify the time for corneal epithelial blisters disappearing, optical coherence tomography (OCT) was used to monitor the central corneal thickness. Results: No cornea infection was observed during the following up period. The average grade scores of the irrigating symptoms was 8.3 ± 2.1 before surgery, while it was reduced to 4.8 ±1.9 two weeks after the surgery (p=0.0003). Slit-lamp microscope examination showed that corneal edema relieved obviously after the operation, the average time for epithelial blisters disappearing was 15.6 ± 4.0 days. The average central corneal thickness of the eyes was 999.3 ±278.0 μm before the treatment, while it was 805.1 ± 145.0 μm four weeks after the treatment, with a statistically significant difference (p=0.043). Conclusions: ASP with bandage contact lens is an effective and safe treatment for patients with BK and low vision that not suitable for corneal transplantation.
Collapse
Affiliation(s)
- Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiao Zheng
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| | - Jin Gong
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| | - Alataree Sameer
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xinyu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yuan Zhang
- Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Sean Tighe
- Tissue Tech, Inc., Miami, FL, 33126, USA
| | | | - Ping Wang
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| |
Collapse
|
48
|
Zhu Q, Zhu Y, Tighe S, Liu Y, Hu M. Engineering of Human Corneal Endothelial Cells In Vitro. Int J Med Sci 2019; 16:507-512. [PMID: 31171901 PMCID: PMC6535652 DOI: 10.7150/ijms.30759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are responsible for controlling corneal transparency, however they are notorious for their limited proliferative capability. Thus, damage to these cells may cause irreversible blindness. Currently, the only way to cure blindness caused by corneal endothelial dysfunction is via corneal transplantation of a cadaver donor cornea with healthy corneal endothelium. Due to severe shortage of donor corneas worldwide, it has become paramount to develop human corneal endothelial grafts in vitro that can subsequently be transplanted in humans. Recently, we have reported effective expansion of human corneal endothelial cells by reprogramming the cells into progenitor status through use of p120-Kaiso siRNA knockdown. This new reprogramming approach circumvents the need of using induced pluripotent stem cells or embryonic stem cells. Successful promotion of this technology will encourage scientists to re-think how "contact inhibition" can safely be perturbed to our benefit, i.e., effective engineering of an in vivo-like tissue while successful maintaining the normal phenotype. In this review, we present current advances in reprogramming corneal endothelial cells in vitro, detail the methods to successful engineer human corneal endothelial grafts, and discuss their future clinical applications to cure corneal blindness.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| |
Collapse
|
49
|
Kim KW, Lee SJ, Park SH, Kim JC. Ex Vivo Functionality of 3D Bioprinted Corneal Endothelium Engineered with Ribonuclease 5-Overexpressing Human Corneal Endothelial Cells. Adv Healthc Mater 2018; 7:e1800398. [PMID: 30066447 DOI: 10.1002/adhm.201800398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Human corneal endothelial cells (HCECs) are scarcely proliferative in vivo. The cultured HCECs engineered to overexpress ribonuclease (RNase) 5 (R5-HCECs) are prepared after transient transfection with RNase 5 plasmid vector. As candidate targets of R5-HCECs for enhancement of cellular proliferation and survival of R5-HCECs, programmed cell death protein 4 is inhibited, and cyclin D1 and cyclin E1 are activated. The cultured R5-HCECs and control HCECs on lyophilized amniotic membrane (AM) are deposited as a carrier by extrusion-based 3D bioprinting to prepare transplantable RNase 5 vector-transfected HCECs-laden AM graft (R5-Graft) and the control HCECs-laden AM graft (Ct-Graft), respectively. The ready-to-use R5-Graft shows clearer basolateral expression of Na+ -K+ ATPase pump and higher cell confluency than Ct-Graft. From 2 weeks after graft transplantation, both R5-Graft and Ct-Graft start restoring clarity of the rabbit corneas, and their central corneal edema are much less than those in the control group at 3 and 4 weeks. The ex vivo expression of corneal endothelial phenotypical markers is clear in R5-Grafs rather than in Ct-Grafts at 4 weeks. In conclusion, the fabricated corneal endothelium with cultured HCECs easily survives and functions as corneal endothelium in vivo. Furthermore, the use of the cultured HCECs engineered to overexpress RNase 5 (R5-HCECs) may be an option to obtain higher graft cellularity and to enhance the function of transplanted grafts.
Collapse
Affiliation(s)
- Kyoung Woo Kim
- Graduate School of Chung-Ang University; College of Medicine; 84, Heukseok-ro; Dongjak-gu Seoul 06974 Republic of Korea
| | - Soo Jin Lee
- Department of Ophthalmology; College of Medicine; Chung-Ang University Hospital; 102, Heukseok-ro; Dongjak-gu Seoul 06973 Republic of Korea
- Cheil Eye Research Institute; Cheil Eye Hospital; 1, Ayang-ro; Dong-gu Daegu 41196 Republic of Korea
| | - Soo Hyun Park
- Department of Ophthalmology; College of Medicine; Chung-Ang University Hospital; 102, Heukseok-ro; Dongjak-gu Seoul 06973 Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology; College of Medicine; Chung-Ang University Hospital; 102, Heukseok-ro; Dongjak-gu Seoul 06973 Republic of Korea
- Cheil Eye Research Institute; Cheil Eye Hospital; 1, Ayang-ro; Dong-gu Daegu 41196 Republic of Korea
| |
Collapse
|
50
|
Brookes NH. Riding the cell jamming boundary: Geometry, topology, and phase of human corneal endothelium. Exp Eye Res 2018; 172:171-180. [PMID: 29656016 DOI: 10.1016/j.exer.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
It is important to assess the viability of eye-banked corneas prior to transplantation due to inherent senescence and known loss of endothelial cells during surgical manipulation. Corneal endothelial cells have a complex basal and paracellular shape making them challenging to accurately measure, particularly in oedematous ex vivo tissue. This study used calibrated centroidal Voronoi Diagrams to segment cells in images of these human corneas, in order to characterize endothelial geometry, topology, and phase. Hexagonal cells dominated the endothelia, with most comprised of five different pleomorphs exhibiting self-similar topological coarsening through most of the endothelial cell density range. There was a linear relationship between cell size and shape, though cells with greater than six sides were present in larger proportions than cells with less. Hexagonal cell regularity was stable and largely independent of density. Cell and tissue phase was also examined, using the cell shape index relative to the recently discovered 'cell jamming' phase transition boundary. Images showed fluid endothelia with a range of shape indices spanning the boundary, independent of density but dependent on hexagonal regularity. The cells showed a bimodal distribution centred at the boundary, with the largest proportion of cells on the fluid side. A shoulder at the boundary suggested phase switching via shape transformation across the energy barrier, with cells either side having distinctly different size and shape characteristics. Regular hexagonal cells were closest to the boundary. This study showed the corneal endothelium acts as a glassy viscous foam characterized by well-established physical laws. Endothelial cell death transiently and locally increases cell fluidity, which is subsequently arrested by jamming of the pleomorphically diverse cell collective, via rearrangement and shape change of a small proportion of cells, which become locked in place by their neighbours thereby maintaining structural equilibrium with little energy expenditure.
Collapse
Affiliation(s)
- Nigel H Brookes
- New Zealand National Eye Bank and Department of Ophthalmology, University of Auckland, New Zealand.
| |
Collapse
|