1
|
Li G, van Batenburg‐Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, de Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Bowes Rickman C, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. Aging Cell 2024; 23:e14160. [PMID: 38566432 PMCID: PMC11258442 DOI: 10.1111/acel.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Babak N. Safa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Nina Sara Fraticelli Guzmán
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrea Wilson
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Kevin Choy
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | | | - J. Serena Cui
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrew J. Feola
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Center for Visual and Neurocognitive RehabilitationAtlanta Virginia Medical CenterDecaturGeorgiaUSA
| | - Tara Weisz
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | - Megan Kuhn
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Sina Farsiu
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Department of OphthalmologyEmory UniversityAtlantaGeorgiaUSA
| | - W. Daniel Stamer
- Department of OphthalmologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
2
|
Li G, van Batenburg-Sherwood J, Safa BN, Fraticelli Guzmán NS, Wilson A, Bahrani Fard MR, Choy K, De Ieso ML, Cui JS, Feola AJ, Weisz T, Kuhn M, Rickman CB, Farsiu S, Ethier CR, Stamer WD. Aging and intraocular pressure homeostasis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562768. [PMID: 38106150 PMCID: PMC10723259 DOI: 10.1101/2023.10.17.562768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.
Collapse
|
3
|
Goodman D, Ness S. The Role of Oxidative Stress in the Aging Eye. Life (Basel) 2023; 13:life13030837. [PMID: 36983992 PMCID: PMC10052045 DOI: 10.3390/life13030837] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Given the expanding elderly population in the United States and the world, it is important to understand the processes underlying both natural and pathological age-related changes in the eye. Both the anterior and posterior segment of the eye undergo changes in biological, chemical, and physical properties driven by oxidative stress. With advancing age, changes in the anterior segment include dermatochalasis, blepharoptosis, thickening of the sclera, loss of corneal endothelial cells, and stiffening of the lens. Changes in the posterior segment include lowered viscoelasticity of the vitreous body, photoreceptor cell loss, and drusen deposition at the macula and fovea. Age-related ocular pathologies including glaucoma, cataracts, and age-related macular degeneration are largely mediated by oxidative stress. The prevalence of these diseases is expected to increase in the coming years, highlighting the need to develop new therapies that address oxidative stress and slow the progression of age-related pathologies.
Collapse
Affiliation(s)
- Deniz Goodman
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
4
|
Ramjiani V, Mudhar HS, Julian T, Auger G. Sampling trabecular meshwork using TrabEx. BMC Ophthalmol 2021; 21:138. [PMID: 33740938 PMCID: PMC7980329 DOI: 10.1186/s12886-021-01895-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background To report sampling of the trabecular meshwork using the TrabEx+ (MicroSurgical Technology, Redmond, Washington, USA) device in ab interno trabeculectomy. Specifically, this series focusses upon preservation of the trabecular meshwork architecture for assessment of glaucomatous features using common histopathological techniques. Patients This series features six glaucomatous eyes undergoing TrabEx+ with or without cataract surgery. Three patients had primary open angle glaucoma and the remaining had pigment dispersion glaucoma, ocular hypertension or uveitic glaucoma. Four eyes had simultaneous cataract surgery. Methods Trabecular meshwork was excised using the TrabEx+ device and retrieved using vitreoretinal forceps. The samples were then processed into formalin-fixed paraffin-embedded 4 micron tissue segments and stained with haematoxylin and eosin, periodic acid–Schiff and elastin Van Gieson. Collagen IV was labelled using immunohistochemistry for the purpose of identifying the basement membrane of trabecular beams. Results Presence of trabecular meshwork was confirmed in five of the six samples taken. One of six samples consisted of blood only, but this was expected following early termination of the procedure due to patient restlessness. In the five positive cases trabecular beams with associated trabecular meshwork cells were identified on hematoxylin-eosin and periodic acid–Schiff staining. The beams retained their lamellar structure. The basement membrane underlying the trabecular cells was evident in three specimens, whilst two specimens were of insufficient size for collagen IV labelling. Conclusions This case series illustrates that TrabEx+ can be utilised to successfully retrieve trabecular meshwork samples with sufficient architectural perseveration of the tissue to enable histopathological and laboratory analysis.
Collapse
Affiliation(s)
- Vipul Ramjiani
- Department of Ophthalmology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, England, S10 2JF, Sheffield, UK.
| | - Hardeep-Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Dept of Histopathology-E-Floor, Royal Hallamshire Hospital, Glossop Rd, England, S10 2JF, Sheffield, UK
| | - Thomas Julian
- Department of Ophthalmology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, England, S10 2JF, Sheffield, UK.,The University of Sheffield, Broomhall, England, S10 2TG, Sheffield, UK
| | - Graham Auger
- Department of Ophthalmology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Rd, England, S10 2JF, Sheffield, UK
| |
Collapse
|
5
|
Seleem AA. Induction of hyperpigmentation and heat shock protein 70 response to the toxicity of methomyl insecticide during the organ development of the Arabian toad, Bufo arabicus (Heyden,1827). J Histotechnol 2019; 42:104-115. [PMID: 31492089 DOI: 10.1080/01478885.2019.1619653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methomyl (MET) is a carbamate insecticide which is used as a substitute for organophosphorus compounds to protect crops against insects. The present study aims to evaluate the cytoprotection response of pigment cells and heat shock protein 70 (HSP70) after exposure to MET during the tadpole developmental stages of the Arabian toad, Bufo arabicus. Three developmental larval stages of the toad were selected and divided into two groups; Control and MET-exposed (MET-EX) tadpoles (10ppm). MET-EX tadpoles showed an increased number of pigment cells in the liver, kidney, anterior eye chamber, and skin tissues as compared to the control. The glycogen content in the developing liver and muscles (myotomes) of MET-EX tadpoles was decreased as compared to the control. In the MET-EX tadpoles, immunohistochemical staining showed an increase of HSP70 expression in the liver hepatocytes, the nucleated red blood cells (nRBC) in kidney glomeruli, the iridocorneal angle of anterior eye chamber, and the skin as compared to the control. The current study concluded that pigment cells and HSP70 represented a cytoprotecting response against MET insecticide during the organ development of B. arabicas tadpoles. Therefore, MET use should be regularly monitored in the environment to protect animals and human from exposure to this insecticide.
Collapse
Affiliation(s)
- Amin Abdou Seleem
- Zoology Department, Faculty of Science, Sohag University , Sohag , Egypt.,Biology Department, Faculty of Science and Arts, Al-Ula, Taibah University , Medina , Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Matsuo M, Pajaro S, De Giusti A, Tanito M. Automated anterior chamber angle pigmentation analyses using 360° gonioscopy. Br J Ophthalmol 2019; 104:636-641. [DOI: 10.1136/bjophthalmol-2019-314320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/19/2019] [Accepted: 08/17/2019] [Indexed: 11/04/2022]
Abstract
PurposeTo assess the pigmentation distribution in the iridocorneal angle using an established algorithm with gonioscopically obtained images.MethodsManual and automatically modified Scheie’s pigmentation grading (ie, 0/I=0, II=1 and III/IV=2) of trabecular meshwork was performed using an established algorithm on the 75 open-angle eyes of 75 subjects obtained by automated gonioscopy. All images were collected at the Matsue Red Cross Hospital in 2016. The differences in the pigmentation density were compared statistically between the automated and manual techniques and among the four sectors (ie, inferior, superior, temporal and nasal) and the four quadrants.ResultsThere was substantial agreement between both grading methods (kappa value=0.70). There was no significant difference between the automated and manual grading in any sectors except for the superior (p=0.0004). The automated pigmentation grade was significantly (p<0.05) higher in the inferior sector (mean grade, 1.43) than in the others (mean grade, 0.48~0.76), and it was also significantly (p<0.05) higher in the inferior quadrant (mean grade, 3.56) than in the others (mean grade, 1.64~2.24). The findings were similar for manual grading.ConclusionsThe entire distribution of the pigmentation in the anterior chamber angle was classified successfully using the algorithm, and the automated versus manual grading comparison showed good agreement. The automated pigmentation grading scores in the inferior sector and inferior quadrant were significantly higher than in the others as previously reported. Similar findings also were seen for manual grading.
Collapse
|
7
|
Hirt J, Liton PB. Autophagy and mechanotransduction in outflow pathway cells. Exp Eye Res 2017; 158:146-153. [PMID: 27373974 PMCID: PMC5199638 DOI: 10.1016/j.exer.2016.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Abstract
Because of elevations in IOP and other forces, cells in the trabecular meshwork (TM) are constantly subjected to mechanical strain. In order to preserve cellular function and regain homeostasis, cells must sense and adapt to these morphological changes. We and others have already shown that mechanical stress can trigger a broad range of responses in TM cells; however, very little is known about the strategies that TM cells use to respond to this stress, so they can adapt and survive. Autophagy, a lysosomal degradation pathway, has emerged as an important cellular homeostatic mechanism promoting cell survival and adaptation to a number of cytotoxic stresses. Our laboratory has reported the activation of autophagy in TM cells in response to static biaxial strain and high pressure. Moreover, our newest data also suggest the activation of chaperon-assisted selective autophagy, a recently identified tension-induced autophagy essential for mechanotransduction, in TM cells under cyclic mechanical stress. In this review manuscript we will discuss autophagy as part of an integrated response triggered in TM cells in response to strain, exerting a dual role in repair and mechanotransduction, and the potential effects of dysregulated in outflow pathway pathophysiology.
Collapse
Affiliation(s)
- Joshua Hirt
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA.
| |
Collapse
|
8
|
Abstract
In order to understand the pathophysiology, select optimal therapeutic options for patients and provide clients with honest expectations for cases of canine glaucoma, clinicians should be familiar with a rational understanding of the functional anatomy of the ocular structures involved in this group of diseases. The topographical extension and the structural and humoral complexity of the regions involved with the production and the outflow of aqueous humor undergo numerous changes with aging and disease. Therefore, the anatomy relative to the fluid dynamics of aqueous has become a pivotal yet flexible concept to interpret the different phenotypes of glaucoma.
Collapse
Affiliation(s)
- Stefano Pizzirani
- Ophthalmology, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| | - Haiyan Gong
- Ophthalmology and Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, L905, Boston, MA 02118, USA
| |
Collapse
|
9
|
Liton PB. The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res 2015; 144:29-37. [PMID: 26226231 DOI: 10.1016/j.exer.2015.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
Malfunction of the trabecular meshwork (TM)/schlemm's canal (SC) conventional outflow pathway is associated with elevated intraocular pressure (IOP) and, therefore, increased risk of developing glaucoma, a potentially blinding disease affecting more than 70 million people worldwide. This TM/SC tissue is subjected to different types of stress, including mechanical, oxidative, and phagocytic stress. Long-term exposure to these stresses is believed to lead to a progressive accumulation of damaged cellular and tissue structures causing permanent alterations in the tissue physiology, and contribute to the pathologic increase in aqueous humor (AH) outflow resistance. Autophagy is emerging as an essential cellular survival mechanism against a variety of stressors. In addition to performing basal functions, autophagy acts as a cellular survival pathway and represents an essential mechanism by which organisms can adapt to acute stress conditions and repair stress-induced damage. A decline in autophagy has been observed in most tissues with aging and has been considered responsible, at least in part, for the accumulation of damaged cellular components in almost all tissues of aging organisms. Dysfunction in the autophagy pathway is associated with several human diseases, from infectious diseases to cancer and neurodegeneration. In this review, we will summarize our current knowledge of the emerging roles of autophagy in outflow tissue physiology and pathophysiology, including novel evidence suggesting compromised autophagy in the glaucomatous outflow pathway.
Collapse
Affiliation(s)
- Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA.
| |
Collapse
|
10
|
Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2014; 71:2197-218. [PMID: 24142347 PMCID: PMC11113507 DOI: 10.1007/s00018-013-1493-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
Primary open-angle glaucoma is a multifactorial disease that affects the retinal ganglion cells, but currently its therapy is to lower the eye pressure. This indicates a definite involvement of the trabecular meshwork, key region in the pathogenesis of glaucoma. This is the first target of glaucoma, and its functional complexity is a real challenge to search. Its functions are those to allow the outflow of aqueous humor and not the reflux. This article describes the morphological and functional changes that happen in anterior chamber. The "primus movens" is oxidative stress that affects trabecular meshwork, particularly its endothelial cells. In these develops a real mitochondriopaty. This leads to functional impotence, the trabecular meshwork altering both motility and cytoarchitecture. Its cells die by apoptosis, losing barrier functions and altering the aqueous humor outflow. All the morphological alterations occur that can be observed under a microscope. Intraocular pressure rises and the malfunctioning trabecular meshwork endotelial cells express proteins that completely alter the aqueous humor. This is a liquid whose functional proteomics complies with the conditions of the trabecular meshwork. Indeed, in glaucoma, it is possible detect the presence of proteins which testify to what occurs in the anterior chamber. There are six classes of proteins which confirm the vascular endothelium nature of the anterior chamber and are the result of the morphofunctional trabecular meshwork decay. It is possible that, all or in part, these proteins can be used as a signal to the posterior pole.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head and Neck Pathologies, St Martino Hospital, Viale Benedetto XV, 16132, Genoa, Italy,
| | | |
Collapse
|
11
|
Dams I, Wasyluk J, Prost M, Kutner A. Therapeutic uses of prostaglandin F(2α) analogues in ocular disease and novel synthetic strategies. Prostaglandins Other Lipid Mediat 2013; 104-105:109-21. [PMID: 23353557 DOI: 10.1016/j.prostaglandins.2013.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
The pharmacological management of glaucoma and ocular hypertension has significantly changed over the last 18 years with the introduction of PGF2α analogues, more specifically latanoprost (6), travoprost (8), bimatoprost (10) and tafluprost (12). Prostanoids are currently the first-line medicines among ocular antihypertensive drugs in terms of efficacy, safety, patient compliance and medical economy. Their ability to effectively reduce intraocular pressure with once-per-day dosing, ocular tolerability comparable to timolol and general lack of systemic adverse effects have made them the mainstay of pharmacological therapy for glaucoma and ocular hypertension all over the world. The present review reports a novel, convergent and highly diastereoselective method for the synthesis of PGF2α analogues from the structurally advanced prostaglandin phenylsulfone (5Z)-(+)-15 and new ω-chain synthons. The biochemistry, clinical efficacy and side effects of four commercially available PGF2α analogues, currently used as first-line agents for reducing intraocular pressure in patients with glaucoma or ocular hypertension, are also discussed.
Collapse
Affiliation(s)
- Iwona Dams
- R&D Chemistry Department, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warsaw, Poland.
| | | | | | | |
Collapse
|
12
|
Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol 2009; 53 Suppl1:S93-105. [PMID: 19038628 DOI: 10.1016/j.survophthal.2008.08.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Topical prostaglandin analogs, which have become first-line therapy in the medical management of glaucoma, have an excellent safety profile with regard to systemic side effects, but are associated with several ocular side effects. Some of these are common, with no apparent serious consequences other than cosmetic, whereas others are much less common but represent potentially sight-threatening side effects. The former group includes conjunctival hyperemia, elongation and darkening of eyelashes, induced iris darkening, and periocular skin pigmentation. The latter group of side effects, which are relatively rare and lack definitive causal relationship to prostaglandin analog therapy, includes iris cysts, cystoid macular edema, anterior uveitis, and reactivation of herpes simplex keratitis. Most of the literature regarding side effects associated with prostaglandin analogs involves the use of latanoprost, probably because it was the first to be studied. There is no evidence, however, aside from less conjunctival hyperemia with latanoprost, that the commercially available prostaglandin analogs differ significantly with regard to side effects.
Collapse
Affiliation(s)
- Albert Alm
- Department of Neuroscience, Ophthalmology, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
13
|
Niyadurupola N, Broadway DC. Pigment dispersion syndrome and pigmentary glaucoma - a major review. Clin Exp Ophthalmol 2008; 36:868-82. [PMID: 19278484 DOI: 10.1111/j.1442-9071.2009.01920.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuwan Niyadurupola
- Department of Ophthalmology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK.
| | | |
Collapse
|
14
|
Liton PB, Gonzalez P, Epstein DL. The role of proteolytic cellular systems in trabecular meshwork homeostasis. Exp Eye Res 2008; 88:724-8. [PMID: 19046967 DOI: 10.1016/j.exer.2008.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms contributing to the progressive malfunction of the trabecular meshwork (TM)/Schlemm's canal (SC) conventional outflow pathway during aging and in Primary Open Angle Glaucoma (POAG) are still poorly understood. Progressive accumulation of damaged and cross-linked proteins is a hallmark of aging tissues and has been proposed to play a major role in the tissue abnormalities associated with organismal aging and many age-related diseases. Such progressive accumulation of damaged proteins with age is believed to result from both, increased oxidative stress that results in faster rates of protein damage, as well as from a functional decline in the cellular proteolytic machinery that eliminates misfolded and damaged proteins. Here, we review the reported data that supports the occurrence of oxidative damage and the alterations in the intracellular proteolytic systems in the TM in aging and POAG. Finally, we discuss how the functional decline of the cellular proteolytic machinery in the TM might lead to the observed physiologic alterations of the outflow pathway in glaucoma.
Collapse
Affiliation(s)
- Paloma B Liton
- Duke University, Department of Ophthalmology, AERI 4004, Durham, NC 27710, USA.
| | | | | |
Collapse
|
15
|
Yam GHF, Gaplovska-Kysela K, Zuber C, Roth J. Aggregated myocilin induces russell bodies and causes apoptosis: implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:100-9. [PMID: 17200186 PMCID: PMC1762699 DOI: 10.2353/ajpath.2007.060806] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary open-angle glaucoma with elevated intraocular pressure is a leading cause of blindness worldwide. Mutations of myocilin are known to play a critical role in the manifestation of the disease. Misfolded mutant myocilin forms secretion-incompetent intracellular aggregates. The block of myocilin secretion was proposed to alter the extracellular matrix environment of the trabecular meshwork, with subsequent impediment of aqueous humor outflow leading to elevated intraocular pressure. However, the molecular pathogenesis of myocilin-caused glaucoma is poorly defined. In this study, we show that heteromeric complexes composed of wild-type and mutant myocilin were retained in the rough endoplasmic reticulum, aggregating to form inclusion bodies typical of Russell bodies. The presence of myocilin aggregates induced the unfolded protein response proteins BiP and phosphorylated endoplasmic reticulum-localized eukaryotic initiation factor-2alpha kinase (PERK) with the subsequent activation of caspases 12 and 3 and expression of C/EBP homologous protein (CHOP)/GADD153, leading to apoptosis. Our findings identify endoplasmic reticulum stress-induced apoptosis as a pathway to explain the reduction of trabecular meshwork cells in patients with myocilin-caused glaucoma. As a consequence, the phagocytotic capacity of the remaining trabecular meshwork cell population would be insufficient for effective cleaning of aqueous humor, constituting a major pathogenetic factor for the development of increased intraocular pressure in primary open-angle glaucoma.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | |
Collapse
|