1
|
Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional. iScience 2022; 25:105308. [DOI: 10.1016/j.isci.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
2
|
Xuan W, Moothedathu AA, Meng T, Gibson DC, Zheng J, Xu Q. 3D engineering for optic neuropathy treatment. Drug Discov Today 2020; 26:181-188. [PMID: 33038525 DOI: 10.1016/j.drudis.2020.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022]
Abstract
Ocular disorders, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP), and glaucoma, can cause irreversible visual loss, and affect the quality of life of millions of patients. However, only very few 3D systems can mimic human ocular pathophysiology, especially the retinal degenerative diseases, which involve the loss of retinal ganglion cells (RGCs), photoreceptors, or retinal pigment epithelial cells (RPEs). In this review, we discuss current progress in the 3D modeling of ocular tissues, and review the use of the aforementioned technologies for optic neuropathy treatment according to the categories of associated disease models and their applications in drug screening, mechanism studies, and cell and gene therapies.
Collapse
Affiliation(s)
- Wenjing Xuan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aji Alex Moothedathu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David C Gibson
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinhua Zheng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Ophthalmology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA; Ophthalmology, Center for Pharmaceutical Engineering, Massey Cancer Center, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
3
|
Suen HC, Qian Y, Liao J, Luk CS, Lee WT, Ng JKW, Chan TTH, Hou HW, Li I, Li K, Chan WY, Feng B, Gao L, Jiang X, Liu YH, Rudd JA, Hobbs R, Qi H, Ng TK, Mak HK, Leung KS, Lee TL. Transplantation of Retinal Ganglion Cells Derived from Male Germline Stem Cell as a Potential Treatment to Glaucoma. Stem Cells Dev 2019; 28:1365-1375. [PMID: 31580778 DOI: 10.1089/scd.2019.0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) degeneration and is the second leading cause of blindness worldwide. However, current treatments such as eye drop or surgery have limitations and do not target the loss of RGC. Regenerative therapy using embryonic stem cells (ESCs) holds a promising option, but ethical concern hinders clinical applications on human subjects. In this study, we employed spermatogonial stem cells (SSCs) as an alternative source of ESCs for cell-based regenerative therapy in mouse glaucoma model. We generated functional RGCs from SSCs with a two-step protocol without applying viral transfection or chemical induction. SSCs were first dedifferentiated to embryonic stem-like cells (SSC-ESCs) that resemble ESCs in morphology, gene expression signatures, and stem cell properties. The SSC-ESCs then differentiated toward retinal lineages. We showed SSC-ESC-derived retinal cells expressed RGC-specific marker Brn3b and functioned as bona fide RGCs. To allow in vivo RGC tracing, Brn3b-EGFP reporter SSC-ESCs were generated and the derived RGCs were subsequently transplanted into the retina of glaucoma mouse models by intravitreal injection. We demonstrated that the transplanted RGCs could survive in host retina for at least 10 days after transplantation. SSC-ESC-derived RGCs can thus potentially be a novel alternative to replace the damaged RGCs in glaucomatous retina.
Collapse
Affiliation(s)
- Hoi Ching Suen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yan Qian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Liao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Shui Luk
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wing Tung Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Judy Kin Wing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thomas Ting Hei Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hei Wan Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ingrid Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kit Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lin Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuen Hang Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Robin Hobbs
- Aust Regenerative Medicine Institute, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Heather Kayew Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai Shun Leung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tin-Lap Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
4
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Green DI, Ou Y. Towards the development of a human glaucoma disease-in-a-dish model using stem cells. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1026329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Singhal S, Bhatia B, Jayaram H, Becker S, Jones MF, Cottrill PB, Khaw PT, Salt TE, Limb GA. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med 2012; 1:188-99. [PMID: 23197778 PMCID: PMC3659849 DOI: 10.5966/sctm.2011-0005] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/30/2012] [Indexed: 01/29/2023] Open
Abstract
Müller glia with stem cell characteristics have been identified in the adult human eye, and although there is no evidence that they regenerate retina in vivo, they can be induced to grow and differentiate into retinal neurons in vitro. We differentiated human Müller stem cells into retinal ganglion cell (RGC) precursors by stimulation with fibroblast growth factor 2 together with NOTCH inhibition using the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). Differentiation into RGC precursors was confirmed by gene and protein expression analysis, changes in cytosolic [Ca(2+)] in response to neurotransmitters, and green fluorescent protein (GFP) expression by cells transduced with a transcriptional BRN3b-GFP reporter vector. RGC precursors transplanted onto the inner retinal surface of Lister hooded rats depleted of RGCs by N-methyl-d-aspartate aligned onto the host RGC layer at the site of transplantation but did not extend long processes toward the optic nerve. Cells were observed extending processes into the RGC layer and expressing RGC markers in vivo. This migration was observed only when adjuvant anti-inflammatory and matrix degradation therapy was used for transplantation. RGC precursors induced a significant recovery of RGC function in the transplanted eyes as determined by improvement of the negative scotopic threshold response of the electroretinogram (indicative of RGC function). The results suggest that transplanted RGC precursors may be capable of establishing local interneuron synapses and possibly release neurotrophic factors that facilitate recovery of RGC function. These cells constitute a promising source of cells for cell-based therapies to treat retinal degenerative disease caused by RGC dysfunction.
Collapse
Affiliation(s)
| | | | - Hari Jayaram
- Divisions of Ocular Biology and Therapeutics and
| | - Silke Becker
- Divisions of Ocular Biology and Therapeutics and
| | | | | | - Peng T. Khaw
- Divisions of Ocular Biology and Therapeutics and
| | - Thomas E. Salt
- Visual Neurosciences, NIHR BRC University College London Institute of Ophthalmology and Moorfields Eye Hospital, London, United Kingdom
| | | |
Collapse
|
7
|
Ghosh F, Taylor L, Arnér K. Exogenous Glutamate Modulates Porcine Retinal Development in vitro. Dev Neurosci 2012; 34:428-39. [DOI: 10.1159/000343721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/27/2012] [Indexed: 12/27/2022] Open
|
8
|
Simpson HD, Giacomantonio CE, Goodhill GJ. Computational modeling of neuronal map development: insights into disease. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the formation of neuronal maps in the brain has greatly increased our understanding of how the brain develops and, in some cases, regenerates. Computational modeling of neuronal map development has been invaluable in integrating complex biological phenomena and synthesizing them into quantitative and predictive frameworks. These models allow us to investigate how neuronal map development is perturbed under conditions of altered development, disease and regeneration. In this article, we use examples of activity-dependent and activity-independent models of retinotopic map formation to illustrate how they can aid our understanding of developmental and acquired disease processes. We note that fully extending these models to specific clinically relevant problems is a largely unexplored domain and suggest future work in this direction. We argue that this type of modeling will be necessary in furthering our understanding of the pathophysiology of neurological diseases and in developing treatments for them. Furthermore, we discuss how the nature of computational and theoretical approaches uniquely places them to bridge the gap between the bench and the clinic.
Collapse
Affiliation(s)
- Hugh D Simpson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare E Giacomantonio
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- School of Mathematics & Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun 2010; 394:877-83. [PMID: 20206598 DOI: 10.1016/j.bbrc.2010.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 01/17/2023]
Abstract
PURPOSE Photoreceptors cannot regenerate and recover their functions once disordered. Transplantation of retinal pigment epithelium (RPE) has recently become a possible therapeutic approach for retinal degeneration. In the present study, we investigated the induction of photoreceptors by coculturing primate embryonic stem cells (ESCs) with ESC-derived RPE cells. METHODS RPE cells were derived by coculturing ESCs and Sertoli cells. Photoreceptors were then induced by using ESC-derived RPE cells and retinoic acid (RA) RESULTS: RPE cell generation was confirmed by morphological analysis, which revealed highly pigmented polygonal cells with a compact cell-cell arrangement. After coculturing ESCs and RPE cells, some ESC derivatives became immunopositive for rhodopsin. RT-PCR analysis demonstrated the expression of retina-related gene markers such as Pax6, CRX, IRBP, rhodopsin, rhodopsin kinase, and Muschx10A. When RA was added, a distinct increase in the expression of photoreceptor-specific proteins and genes was found. In addition, the differentiation of bipolar horizontal cells was demonstrated by protein and gene expression. The ESCs that were cocultured with RPE cells and treated with RA were transplanted into the renal capsule or intra-vitreal space of nude mice. Grafted ESC derivatives demonstrated extensive rhodopsin expression, and they survived and organized into recipient tissues, although they formed teratomas. CONCLUSION These results indicate that coculturing ESCs with ESC-derived RPE cells is a useful and efficient method for inducing photoreceptors and providing an insight into the use of ESCs for retina regeneration.
Collapse
|
10
|
Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 2009; 15:2039-50. [PMID: 19368510 DOI: 10.1089/ten.tea.2008.0359] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipose-derived stromal cells (ASCs) are suggested to be potent candidates for cell therapy of ischemic conditions due to their ability to stimulate blood vessel growth. ASCs produce many angiogenic and anti-apoptotic growth factors, and their secretion is significantly enhanced by hypoxia. Utilizing a Matrigel implant model, we showed that hypoxia-treated ASCs stimulated angiogenesis as well as maturation of the newly formed blood vessels in vivo. To elucidate mechanisms of ASC angiogenic action, we used a co-culture model of ASCs with cells isolated from early postnatal hearts (cardiomyocyte fraction, CMF). CMF contained mature cardiomyocytes, endothelial cells, and progenitor cells. On the second day of culture CMF cells formed spontaneously beating colonies with CD31+ capillary-like structures outgrowing from those cell aggregates. However, these vessel-like structures were not stable, and disassembled within next 5 days. Co-culturing of CMF with ASCs resulted in the formation of stable and branched CD31+ vessel-like structures. Using immunomagnetic depletion of CMF from vascular cells as well as incubation of CMF with mitomycin C-treated ASCs, we showed that in co-culture ASCs enhance blood vessel growth not only by production of paracrine-acting factors but also by promoting the endothelial differentiation of cardiac progenitor cells. All these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by ASCs administration.
Collapse
Affiliation(s)
- Kseniya Rubina
- Department of Biological and Medical Chemistry, Faculty of Fundamental Medicine, Lomonosov Moscow State University , Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aoki H, Hara A, Niwa M, Yamada Y, Kunisada T. In vitro and in vivo differentiation of human embryonic stem cells into retina-like organs and comparison with that from mouse pluripotent epiblast stem cells. Dev Dyn 2009; 238:2266-79. [PMID: 19544586 DOI: 10.1002/dvdy.22008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correctly inducing the differentiation of pluripotent hESCs to a specific lineage with high purity is highly desirable for regenerative cell therapy. Our first effort to perform in vitro differentiation of hESCs resulted in a limited recapitulation of the ocular tissue structures. When undifferentiated hESCs were placed in vivo into the ocular tissue, in this case into the vitreous cavity, 3-dimensional retina-like structures reminiscent of the invagination of the optic vesicle were generated. Immunohistochemical analysis confirmed the presence of both a neural retina-like cell layer and a retinal pigmented epithelium-like cell layer, possibly equivalent to the developing E12.5 mouse retina. Furthermore, mouse epiblast-derived stem cells, which are reported to share some characteristics with hESCs, but not with mouse ESCs, also generated retinal anlage-like structures in vivo. hESC-derived retina-like structures present a novel therapeutic possibility for retinal diseases and also provide a novel experimental system to study early human eye development.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
12
|
Choudhary D, Jansson I, Schenkman JB. CYP1B1, a developmental gene with a potential role in glaucoma therapy. Xenobiotica 2009; 39:606-15. [PMID: 19622003 DOI: 10.1080/00498250903000198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The association of CYP1B1 gene alterations in primary congenital glaucoma individuals has been known for about a decade. Recent evidence has shown the involvement of CYP1B1 mutations in a number of forms of glaucoma and anterior segment disorders. This suggests a wide role for CYP1B1 in ocular physiology. Histochemical studies of eyes from individuals with primary congenital glaucoma revealed abnormalities in the anterior chamber angle, the region between the cornea and the iris, containing the trabecular meshwork. The cells of the trabecular meshwork serve as a filter to allow drainage of the aqueous humour, the fluid formed by the ciliary body that fills the anterior chamber. Mutations in CYP1B1 that affect its activity have frequently been shown to influence development of the trabecular meshwork, and it is thought that CYP1B1, a monooxygenase, acts to form or degrade some endobiotic compound that is necessary for proper development of the filtering structures. The rapidly developing area of stem cell research suggests a potential therapeutic approach for glaucomas resulting from deleterious mutations in CYP1B1, that is, the transfer of stem cells, differentiated to a specific lineage, containing wild-type CYP1B1 to specific regions of the eye, where they will develop into normal cells of that region and rectify the defect.
Collapse
Affiliation(s)
- D Choudhary
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | |
Collapse
|
13
|
Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A, Pasierb M, Trese MT. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev 2009; 18:247-58. [PMID: 18442304 DOI: 10.1089/scd.2008.0057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stem cell therapy may be used potentially to treat retinal degeneration and restore vision. Since embryonic stem cells (ESCs) can differentiate into almost any cell types, including those found in the eye, they can be transplanted to repair or replace damaged or injured retinal tissue resulting from inherited diseases or traumas. In this investigation, we explored the potential of ESCs and ESC-derived neuroprogenitors to proliferate and integrate into the diseased retinal tissue of rd12 mice. These rd12 mice mimic the slow and progressive retinal degeneration seen in humans. Both ESCs and ESC-derived neuroprogenitors from ESCs survived and proliferated as evidenced from an increase in yellow fluorescent protein fluorescence. Quantification analysis of cryosectioned retinal tissue initially revealed that both ESCs and neuroprogenitors differentiated into cells expressing neural markers. However, ESC proliferation was robust and resulted in the disruption of the retinal structure and the eventual formation of teratomas beyond 6 weeks postimplantation. In contrast, the neuroprogenitors proliferated slowly, but differentiated further and integrated into the retinal layers of the eye. The differentiation of neuroprogenitors represented various retinal cell types, as judged from the expression of cell-specific markers including Nestin, Olig1, and glial fibrillary acidic protein. These results suggest that ESC-derived neuroprogenitors can survive, proliferate, and differentiate when implanted into the eyes of experimental mice and may be used potentially as cell therapy for treating degenerated or damaged retinal tissue.
Collapse
Affiliation(s)
- G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Aoki H, Hara A, Motohashi T, Chem H, Kunisada T. Iris as a recipient tissue for pigment cells: organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitro. Dev Dyn 2009; 237:2394-404. [PMID: 18729218 DOI: 10.1002/dvdy.21656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Regenerative transplantation of embryonic stem (ES) cell-derived melanocytes into adult tissues, especially skin that includes hair follicles or the hair follicle itself, generally not possible, whereas that of ES cell-derived pigmented epithelium was reported previously. We investigated the in vivo differentiation of these two pigment cell types derived from ES cells after their transfer into the iris. Melanocytes derived from ES cells efficiently integrated into the iris and expanded to fill the stromal layer of the iris, like those prepared from neonatal skin. Transplanted pigmented epithelium from either ES cells or the neonatal eye was also found to be integrated into the iris. Both types of these regenerated pigment cells showed the correct morphology. Regenerated pigment epithelium expressed its functional marker. Functional blocking of signals required for melanocyte development abolished the differentiation of transplanted melanocytes. These results indicate successful in vivo regenerative transfer of pigment cells induced from ES cells in vitro.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
15
|
Yu D, Silva GA. Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurg Focus 2008; 24:E11. [PMID: 18341387 DOI: 10.3171/foc/2008/24/3-4/e10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decades, stem cell biology has made a profound impact on our views of mammalian development as well as opened new avenues in regenerative medicine. The potential of stem cells to differentiate into various cell types of the body is the principal reason they are being explored in treatments for diseases in which there may be dysfunctional cells and/or loss of healthy cells due to disease. In addition, other properties are unique to stem cells; their endogenous trophic support, ability to home to sites of pathological entities, and stability in culture, which allows genetic manipulation, are also being utilized to formulate stem cell-based therapy for central nervous system (CNS) disorders. In this review, the authors will review key characteristics of embryonic and somatic (adult) stem cells, consider therapeutic strategies employed in stem cell therapy, and discuss the recent advances made in stem cell-based therapy for a number of progressive neurodegenerative diseases in the CNS as well as neuronal degeneration secondary to other abnormalities and injuries. Although a great deal of progress has been made in our knowledge of stem cells and their utility in treating CNS disorders, much still needs to be elucidated regarding the biology of the stem cells and the pathogenesis of targeted CNS diseases to maximize therapeutic benefits. Nonetheless, stem cells present tremendous promise in the treatment of a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana Yu
- Department of Bioengineering, University of California, San Diego, USA
| | | |
Collapse
|
16
|
|
17
|
Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch Clin Exp Ophthalmol 2007; 246:255-65. [PMID: 18004585 DOI: 10.1007/s00417-007-0710-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/13/2007] [Accepted: 10/04/2007] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND An embryonic stem (ES) cell-derived eye-like structure, made up of neural retinal lineage cells, retinal pigment epithelial (RPE) cells, and lens cells was constructed in our laboratory. We have shown that cells from these eye-like structures can be integrated into the developing optic vesicle of chicks. The purpose of this study was to determine whether the cells from these eye-like structures can differentiate into retinal ganglion cells (RGCs) when transplanted into the vitreous of an injured adult mouse retina. METHODS ES cells were induced to differentiate into eye-like structures in vitro for 6 or 11 days. Recipient mouse eyes were injected with NMDA to injure the RGCs prior to the transplantation. Sham-treated eyes received the same amount of carrier vehicle. Cells were extracted from the eye-like structures and transplanted into the vitreous of damaged and control eyes. The host eyes were analyzed both qualitatively and quantitatively by immunohistochemistry 10 days or 8 weeks after transplantation. RESULTS Cells from the ES cell-derived eye-like structures were integrated into the RGC layer, and differentiated into neurons when transplanted into control (non-NMDA-treated) adult eyes. However, they rarely expressed RGC markers. When they were transplanted into NMDA-treated eyes, the cells spread on the surface of the retina and covered a relatively large area of the host RGC layer that had been injured by the NMDA. The cells from the ES cell-derived eye cells frequently differentiated into cells expressing RGC-specific markers, and formed a new RGC layer. In addition, a small number of these ES cell-derived cells were observed to extend axon-like processes toward the optic disc of the host. However, visually evoked responses could not be recorded from the visual cortex. DISCUSSION These findings suggest that ES cell-derived eye-like structures contain cells that can differentiate into RG-like cells and regenerate a new RGC layer. These cells also appeared to be integrated into the retina and extend axon-like processes toward the optic nerve head.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | |
Collapse
|