1
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Calle-Guisado V, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Retinal Development in a Precocial Bird Species, the Quail (Coturnix coturnix, Linnaeus 1758). Cells 2023; 12:cells12070989. [PMID: 37048062 PMCID: PMC10093483 DOI: 10.3390/cells12070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The quail (Coturnix coturnix, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to examine the retinogenesis in this bird species immunohistochemically and compare the results with those from previous studies in precocial and altricial birds. We found that the first PCNA-negative nuclei are detected at Stage (St) 21 in the vitreal region of the neuroblastic layer, coinciding topographically with the first αTubAc-/Tuj1-/Isl1-immunoreactive differentiating ganglion cells. At St28, the first Prox1-immunoreactive nuclei can be distinguished in the vitreal side of the neuroblastic layer (NbL), but also the first visinin-immunoreactive photoreceptors in the scleral surface. The inner plexiform layer (IPL) emerges at St32, and the outer plexiform layer (OPL) becomes visible at St35—the stage in which the first GS-immunoreactive Müller cells are distinguishable. Newly hatched animals show a well-developed stratified retina in which the PCNA-and pHisH3-immunoreactivies are absent. Therefore, retinal cell differentiation in the quail progresses in the stereotyped order conserved among vertebrates, in which ganglion cells initially appear and are followed by amacrine cells, horizontal cells, and photoreceptors. Müller glia are one of the last cell types to be born. Plexiform layers emerge following a vitreal-to-scleral gradient. Finally, our results suggest that there are no significant differences in the timing of different events involved in retinal maturation between the quail and the chicken, but the same events are delayed in an altricial bird species.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Violeta Calle-Guisado
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Correspondence:
| |
Collapse
|
2
|
Hernández-Núñez I, Vivero-Lopez M, Quelle-Regaldie A, DeGrip WJ, Sánchez L, Concheiro A, Alvarez-Lorenzo C, Candal E, Barreiro-Iglesias A. Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochem Cell Biol 2022; 158:401-409. [PMID: 35779079 DOI: 10.1007/s00418-022-02127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain.,Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
3
|
Álvarez-Hernán G, de Mera-Rodríguez JA, de la Gándara F, Ortega A, Barros-Gata I, Romero-Rodríguez JA, Blasco M, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Histogenesis and cell differentiation in the retina of Thunnus thynnus: A morphological and immunohistochemical study. Tissue Cell 2022; 76:101809. [DOI: 10.1016/j.tice.2022.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
4
|
Pushchin I, Kondrashev S, Kamenev Y. Retinal ganglion cell topography and spatial resolution in the Japanese smelt Hypomesus nipponensis (McAllister, 1963). J Anat 2020; 238:905-916. [PMID: 33078423 DOI: 10.1111/joa.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022] Open
Abstract
Vision plays a crucial role in the life of the vast majority of vertebrate species. The spatial arrangement of retinal ganglion cells has been reported to be related to a species' visual behavior. There are many studies focusing on the ganglion cell topography in bony fish species. However, there are still large gaps in our knowledge on the subject. We studied the topography of retinal ganglion cells (GCs) in the Japanese smelt Hypomesus nipponensis, a highly visual teleostean fish with a complex life cycle. DAPI labeling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. The ganglion cell layer was relatively thin (about 6-8 μm), even in areas of increased cell density (area retinae temporalis), and was normally composed of a single layer of cells. In all retinal regions, rare cells occurred in the inner plexiform layer. Nissl-stained retinae were used to estimate the proportion of displaced amacrine cells and glia in different retinal regions. In all retinal regions, about 84.5% of cells in the GC layer were found to be ganglion cells. The density of GCs varied across the retina in a regular way. It was minimum (3990 and 2380 cells/mm2 in the smaller and larger fish, respectively) in the dorsal and ventral periphery. It gradually increased centripetally and reached a maximum of 14,275 and 10,960 cells/mm2 (in the smaller and larger fish, respectively) in the temporal retina, where a pronounced area retinae temporalis was detected. The total number of GCs varied from 177 × 103 (smaller fish) to 212 × 103 cells (larger fish). The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity calculated from the density of GCs and eye geometry and expressed in cycles per degree) was minimum in the ventral periphery (smaller fish, 1.46 cpd; larger fish, 1.26 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.75 cpd). The relatively high density of GCs and the presence of area retinae temporalis in the Japanese smelt are consistent with its highly visual behavior. The present findings contribute to our understanding of the factors affecting the topography of retinal ganglion cells and visual acuity in fish.
Collapse
Affiliation(s)
- Igor Pushchin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Sergei Kondrashev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Yaroslav Kamenev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Álvarez-Hernán G, Hernández-Núñez I, Rico-Leo EM, Marzal A, de Mera-Rodríguez JA, Rodríguez-León J, Martín-Partido G, Francisco-Morcillo J. Retinal differentiation in an altricial bird species, Taeniopygia guttata: An immunohistochemical study. Exp Eye Res 2020; 190:107869. [DOI: 10.1016/j.exer.2019.107869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
|
6
|
Hussein MNA, Cao X, Elokil AA, Huang S. Characterisation of stem and proliferating cells on the retina and lens of loach Misgurnus anguillicaudatus. JOURNAL OF FISH BIOLOGY 2020; 96:102-110. [PMID: 31674006 DOI: 10.1111/jfb.14189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The eye of the fish has a lifelong persistent neurogenesis unlike eye of mammals, so it's highly interesting to study retinal neurogenesis and its genetic control to give complete knowledge about the cause of this property in fish in comparison to mammals. We performed fluorescent in situ hybridisation for loach Misgurnus anguillicaudatus bmi1, msi1 and sox2 genes, which are used as an indicator of the sites of multipotent stem cells. Proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BRDU) and KI67 markers were used as indicators of proliferating cells and glial fibrillary acidic protein (GFAP) immunofluorescence was used for detection of the glial property of cells, as well as, immunohistochemistry detected the role of peroxisome proliferator-activated receptor (PPAR)α and γ in retinal neurogenesis. Our results determined that the lens and the retina of loach M. anguillicaudatus contain proliferative and pluripotent stem cells that have both glial and neuroepithelial properties, which add new cells continuously throughout life even without injury-induced proliferation. The PPARα has an essential function in providing energy supply for retinal neurogenesis more than PPARγ.
Collapse
Affiliation(s)
- Mona N A Hussein
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Abdelmotaleb A Elokil
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Productions Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
7
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn 2019; 248:850-865. [PMID: 31226225 DOI: 10.1002/dvdy.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance. RESULTS Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro. Using the developing visual system of the chicken as a model, the present study found that SA-β-GAL detected in the developing retina corresponded to lysosomal β-galactosidase activity, and that SA-β-GAL activity did not correlate with the chronotopographical distribution of apoptotic cells. However, SA-β-GAL staining in the undifferentiated retina coincided with the appearance of early differentiating neurons. In the laminated retina, SA-β-GAL staining was concentrated in the ganglion, amacrine, and horizontal cell layers. The photoreceptors and pigment epithelial cells also exhibited SA-β-GAL activity throughout retinal development. We have also found that SA-β-GAL staining strongly correlated p21 immunoreactivity. CONCLUSION In conclusion, the results clearly show that SA-β-GAL activity cannot be regarded as a specific marker of senescence during retinal development, and that it is mainly expressed in subpopulations of postmitotic neurons, which are nonproliferative cells, even at early stages of cell differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
8
|
Retinal differentiation in syngnathids: comparison in the developmental rate and acquisition of retinal structures in altricial and precocial fish species. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00447-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Álvarez-Hernán G, Sánchez-Resino E, Hernández-Núñez I, Marzal A, Rodríguez-León J, Martín-Partido G, Francisco-Morcillo J. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817). J Anat 2018; 233:106-120. [PMID: 29582431 DOI: 10.1111/joa.12809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems. However, comparison of embryonic pre-hatchling retinal development between altricial and precocial birds has been poorly explored. The purpose of this study was to examine the morphogenesis and histogenesis of the retina in the altricial zebra finch (Taeniopygia guttata, Vieillot 1817) and compare the results with those from previous studies in the precocial chicken. Several maturational features (morphogenesis of the optic vesicle and optic cup, appearance of the first differentiated neurons, the period in which the non-apical cell divisions are observable, and the emergence of the plexiform layers) were found to occur at later stages in the zebra finch than in the chicken. At hatching, the retina of T. guttata showed the typical cytoarchitecture of the mature tissue, although features of immaturity were still observable, such as a ganglion cell layer containing many thick cells, very thin plexiform layers, and poorly developed photoreceptors. Moreover, abundant mitotic activity was detected in the entire retina, even in the regions where the layering was complete. The circumferential marginal zone was very prominent and showed abundant mitotic activity. The partially undifferentiated stage of maturation at hatching makes the T. guttata retina an appropriate model with which to study avian postnatal retinal neurogenesis.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Elena Sánchez-Resino
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ismael Hernández-Núñez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
10
|
Bejarano-Escobar R, Sánchez-Calderón H, Otero-Arenas J, Martín-Partido G, Francisco-Morcillo J. Müller glia and phagocytosis of cell debris in retinal tissue. J Anat 2017; 231:471-483. [PMID: 28695619 DOI: 10.1111/joa.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Müller cells are the predominant glial cell type in the retina of vertebrates. They play a wide variety of roles in both the developing and the mature retina that have been widely reported in the literature. However, less attention has been paid to their role in phagocytosis of cell debris under physiological, pathological or experimental conditions. Müller glia have been shown to phagocytose apoptotic cell bodies originated during development of the visual system. They also engulf foreign molecules that are injected into the eye, cone outer segments and injured photoreceptors. Phagocytosis of photoreceptor cell debris in the light-damaged teleost retina is primarily carried out by Müller cells. Once the microglial cells become activated and migrate to the photoreceptor cell layer, the phagocytic activity of Müller cells progressively decreases, suggesting a possible mechanism of communication between Müller cells and neighbouring microglia and photoreceptors. Additionally, it has been shown that phagocytic Müller cells acquire proliferating activity in the damaged teleost retina, suggesting that engulfment of apoptotic photoreceptor debris might stimulate the Müller glia to proliferate during the regenerative response. These findings highlight Müller glia phagocytosis as an underlying mechanism contributing to degeneration and regeneration under pathological conditions.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Josué Otero-Arenas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
11
|
Pavón-Muñoz T, Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Retinal development in the gilthead seabream Sparus aurata. JOURNAL OF FISH BIOLOGY 2016; 88:492-507. [PMID: 26507100 DOI: 10.1111/jfb.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The retinal development of the gilthead seabream Sparus aurata has been analysed from late embryonic development to juvenile stages using classical histological and immunohistological methods. Five significant phases were established. Phases 1 and 2 comprise the late embryonic and hatching stages, respectively. The results indicate that during these early stages the retina is composed of a single neuroblastic layer that consists of undifferentiated retinal progenitor cells. Phase 3 (late prolarval stage) is characterized by the emergence of the retinal layers and the appearance of neurochemical profiles in differentiating photoreceptors, amacrine and ganglion cells. Phases 4 and 5 comprise the late larval and juvenile stages. In these stages, all the retinal cell types can be detected immunohistochemically. All the maturational events described are first detected in the central retina and, as development progresses, spread to the rest of the retina following a central-to-peripheral gradient. The results of this study suggest that S. aurata is an altricial teleost species that hatches with a morphologically undifferentiated retina. The most relevant processes involved in retinogenesis occur during the late prolarval stage (phase 3).
Collapse
Affiliation(s)
- T Pavón-Muñoz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - R Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - M Blasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - G Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - J Francisco-Morcillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
12
|
Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina. Exp Eye Res 2015; 138:22-31. [DOI: 10.1016/j.exer.2015.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/19/2022]
|
13
|
Islet-1 immunoreactivity in the developing retina of Xenopus laevis. ScientificWorldJournal 2013; 2013:740420. [PMID: 24348185 PMCID: PMC3844241 DOI: 10.1155/2013/740420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/22/2013] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.
Collapse
|
14
|
Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 2013; 223:171-84. [PMID: 23758763 DOI: 10.1111/joa.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark's visual system ontogeny.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
15
|
Cid P, Doldán MJ, Rodríguez MS, Prego B, de Miguel E. Analysis of the morphogenesis and cell proliferation in the retina of a pleuronectiform fish, the turbot psetta maxima (Pleuronectiformes: Teleostei). Microsc Res Tech 2013; 76:588-97. [DOI: 10.1002/jemt.22203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Patricia Cid
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Jesús Doldán
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Soledad Rodríguez
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Benjamin Prego
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Encarnación de Miguel
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| |
Collapse
|
16
|
Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Light-induced degeneration and microglial response in the retina of an epibenthonic pigmented teleost: age-dependent photoreceptor susceptibility to cell death. ACTA ACUST UNITED AC 2012; 215:3799-812. [PMID: 22811246 DOI: 10.1242/jeb.072124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Constant intense light causes apoptosis of photoreceptors in the retina of albino fish. However, very few studies have been performed on pigmented species. Tench (Tinca tinca) is a teleost inhabiting dimly lit environments that has a predominance of rods within the photoreceptor layer. To test the hypothesis that constant high intensity light can result in retinal damage in such pigmented epibenthonic teleost species, photodegeneration of the retina was investigated in the larvae and in juveniles of tench to assess whether any damage may also be dependent on fish age. We exposed both groups of animals to 5 days of constant darkness, followed by 4 days of constant 20,000 lx light, and then by 6 days of recovery in a 14 h light:10 h dark cycle. The results showed that the retina of the larvae group exhibited abundant photoreceptor cell apoptosis during the time of exposition to intense light, whereas that of juveniles was indifferent to it. Damaged retinas showed a strong TUNEL signal in photoreceptor nuclei, and occasionally a weak cytoplasmic TUNEL signal in Müller glia. Specific labelling of microglial cells with Griffonia simplicifolia lectin (GSL) histochemistry revealed that photoreceptor cell death alerts microglia in the degenerating retina, leading to local proliferation, migration towards the injured outer nuclear layer (ONL), and enhanced phagocytosis of photoreceptor debris. During the first days of intense light treatment, Müller cells phagocytosed dead photoreceptor cells but, once microglial cells became activated, there was a progressive increase in the phagocytic capacity of the microglia.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
17
|
Wu MS, Chen CW, Lin CH, Tzeng CS, Chang CY. Differential expression profiling of orange-spotted grouper larvae, Epinephelus coioides (Hamilton), that survived a betanodavirus outbreak. JOURNAL OF FISH DISEASES 2012; 35:215-225. [PMID: 22324345 DOI: 10.1111/j.1365-2761.2012.01341.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nervous necrosis virus (NNV), a piscine nodavirus, has caused serious viral nervous necrosis and viral encephalopathy and retinopathy in hatchery-reared larvae and juveniles of a wide range of marine teleost species worldwide in the last two decades. Although the mortality of NNV-infected larvae is nearly 100%, there are still some larvae that survive this catastrophe. To comprehensively understand the variations of these survivors at the molecular level, we collected orange-spotted grouper larvae that survived an NNV outbreak in an indoor hatchery in southern Taiwan to study differential gene expression. Healthy larvae with high, medium and low levels of detected NNV were compared with morbid larvae using a 9600-clone-containing grouper larva cDNA microarray, and differential gene expression was further confirmed by a quantitative real-time polymerase chain reaction. Significant variation exists in healthy larvae. The following genes were upregulated: adenylate kinase 1-2, myosin binding protein H-like, myosin light chain 2, myosin light chain 3, tropomyosin, fast/white muscle troponin T embryonic isoform, and parvalbumin 1 and 2 genes. The following genes were downregulated: apolipoprotein A-I, trypsinogen, pyruvate kinase and astacin-like metalloprotease. Moreover, immunoglobulin M heavy chain gene transcription was significantly higher in healthy larvae that had high virus levels, indicating that humoral immunity might protect organisms from viral infection. These results suggest that some non-immune-related genes may have played important roles in survival during the larval metamorphosis stage, after betanodavirus infection.
Collapse
Affiliation(s)
- M-S Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Bejarano-Escobar R, Blasco M, Durán AC, Rodríguez C, Martín-Partido G, Francisco-Morcillo J. Retinal histogenesis and cell differentiation in an elasmobranch species, the small-spotted catshark Scyliorhinus canicula. J Anat 2012; 220:318-35. [PMID: 22332849 DOI: 10.1111/j.1469-7580.2012.01480.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here we present a detailed study of the major events in the retinal histogenesis in a slow-developing elasmobranch species, the small-spotted catshark, during embryonic, postnatal and adult stages using classical histological and immunohistological methods, providing a complete neurochemical characterization of retinal cells. We found that the retina of the small-spotted catshark was fully differentiated prior to birth. The major developmental events in retinal cell differentiation occurred during the second third of the embryonic period. Maturational features described in the present study were first detected in the central retina and, as development progressed, they spread to the rest of the retina following a central-to-peripheral gradient. While the formation of both plexiform layers occurs simultaneously in the retina of the most common fish models, in the small-spotted catshark retina the emergence of the outer plexiform layer was delayed with respect to the inner plexiform layer. According to the expression of the markers used, retinal cell differentiation followed a vitreal-to-scleral gradient, with the exception of Müller cells that were the last cell type generated during retinogenesis. This vitreal-to-scleral progression of neural differentiation seems to be specific to slow-developing fish species.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Aquaporin-4 immunoreactivity in Müller and amacrine cells of marine teleost fish retina. Brain Res 2012; 1432:46-55. [DOI: 10.1016/j.brainres.2011.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 02/02/2023]
|
20
|
Bejarano-Escobar R, Holguín-Arévalo MS, Montero JA, Francisco-Morcillo J, Martín-Partido G. Macrophage and microglia ontogeny in the mouse visual system can be traced by the expression of Cathepsins B and D. Dev Dyn 2011; 240:1841-55. [PMID: 21648018 DOI: 10.1002/dvdy.22673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/11/2023] Open
Abstract
Here, we show a detailed chronotopographical analysis of cathepsin B and D expression during development of the mouse visual system. Both proteases were detected in large rounded/ameboid cells usually located in close relationship with prominent sites of extensive physiological cell death. In concordance with their morphological features and topographical distribution, we demonstrate that expressing cells corresponded with macrophages and microglial precursors. We found that as microglial precursors differentiated the expression of both cathepsins was down-regulated. Of interest, cathepsin B and D transcripts were never observed in degenerating cells. Our findings point to a role for cathepsin D and B in cell debris degradation after apoptotic processes rather than promoting cell death, as proposed for other developmental models. Additionally their pattern of expression suggests a role in the maturation of the microglial precursors.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
21
|
Ferreiro-Galve S, Rodríguez-Moldes I, Candal E. Calretinin immunoreactivity in the developing retina of sharks: comparison with cell proliferation and GABAergic system markers. Exp Eye Res 2010; 91:378-86. [PMID: 20599967 DOI: 10.1016/j.exer.2010.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The calcium-binding protein calretinin (CR) has been widely used as a marker of neuronal differentiation. In the present study we analyzed the distribution of CR-immunoreactive (CR-ir) elements in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). We compared the distribution of CR with that of a proliferation marker (the proliferating cell nuclear antigen, PCNA) in order to investigate the time course of CR expression during retinogenesis and explored the relationship between CR and glutamic acid decarboxylase (GAD), the synthesizing enzyme of the gamma-aminobutyric acid (GABA), which has been reported to play a role in shark retinogenesis. The earliest CR immunoreactivity was concurrently observed in subsets of: a) ganglion cells in the ganglion cell layer; b) displaced ganglion cells in the inner plexiform layer and inner part of the inner nuclear layer (INLi); c) amacrine cells in the INLi, and d) horizontal cells. This pattern of CR distribution is established in the developing retina from early stage 32, long after the appearance of a layered retinal organization in the inner retina, and coinciding with photoreceptor maturation in the outer retina. We also demonstrated that CR is expressed in postmitotic cells long after they have exited the cell cycle and in a subset of GABAergic horizontal cells. Overall our results provide insights into the differentiation patterns in the elasmobranch retina and supply further comparative data on the development of CR distribution in the retina of vertebrates. This study may help in understanding the possible involvement of CR in aspects of retinal morphogenesis.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
22
|
Bejarano-Escobar R, Blasco M, DeGrip WJ, Oyola-Velasco JA, Martín-Partido G, Francisco-Morcillo J. Eye development and retinal differentiation in an altricial fish species, the senegalese sole (Solea senegalensis, Kaup 1858). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:580-605. [DOI: 10.1002/jez.b.21363] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/10/2010] [Accepted: 05/17/2010] [Indexed: 12/19/2022]
|