1
|
Jing X, Wang W, He X, Liu X, Yang X, Su C, Shao Y, Ge Z, Wang H, Cui X. HIF-2α/TFR1 mediated iron homeostasis disruption aggravates cartilage endplate degeneration through ferroptotic damage and mtDNA release: A new mechanism of intervertebral disc degeneration. J Orthop Translat 2024; 46:65-78. [PMID: 38808263 PMCID: PMC11130997 DOI: 10.1016/j.jot.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Backgroud Iron overload is a prevalent condition in the elderly, often associated with various degenerative diseases, including intervertebral disc degeneration (IDD). Nevertheless, the mechanisms responsible for iron ion accumulation in tissues and the mechanism that regulate iron homeostasis remain unclear. Transferrin receptor-1 (TFR1) serves as the primary cellular iron gate, playing a pivotal role in controlling intracellular iron levels, however its involvement in IDD pathogenesis and the underlying mechanism remains obscure. Methods Firstly, IDD mice model was established to determine the iron metabolism associated proteins changes during IDD progression. Then CEP chondrocytes were isolated and treated with TBHP or pro-inflammatory cytokines to mimic pathological environment, western blotting, immunofluorescence assay and tissue staining were employed to explore the underlying mechanisms. Lastly, TfR1 siRNA and Feristatin II were employed and the degeneration of IDD was examined using micro-CT and immunohistochemical analysis. Results We found that the IDD pathological environment, characterized by oxidative stress and pro-inflammatory cytokines, could enhance iron influx by upregulating TFR1 expression in a HIF-2α dependent manner. Excessive iron accumulation not only induces chondrocytes ferroptosis and exacerbates oxidative stress, but also triggers the innate immune response mediated by c-GAS/STING, by promoting mitochondrial damage and the release of mtDNA. The inhibition of STING through siRNA or the reduction of mtDNA replication using ethidium bromide alleviated the degeneration of CEP chondrocytes induced by iron overload. Conclusion Our study systemically explored the role of TFR1 mediated iron homeostasis in IDD and its underlying mechanisms, implying that targeting TFR1 to maintain balanced iron homeostasis could offer a promising therapeutic approach for IDD management. The translational potential of this article Our study demonstrated the close link between iron metabolism dysfunction and IDD, indicated that targeting TfR1 may be a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Xining He
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Xiaoxia Yang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Cheng Su
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Yuandong Shao
- Department of Spine Surgery, Binzhou People's Hospital, Binzhou, 256600, China
| | - Zhongpeng Ge
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Heran Wang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250000, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
2
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells 2021; 10:cells10092382. [PMID: 34572031 PMCID: PMC8465210 DOI: 10.3390/cells10092382] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
NDRG1 is an oncogenic signaling disruptor that plays a key role in multiple cancers, including aggressive pancreatic tumors. Recent studies have indicated a role for NDRG1 in the inhibition of multiple tyrosine kinases, including EGFR, c-Met, HER2 and HER3, etc. The mechanism of activity of NDRG1 remains unclear, but to impart some of its functions, NDRG1 binds directly to key effector molecules that play roles in tumor suppression, e.g., MIG6. More recent studies indicate that NDRG1s-inducing drugs, such as novel di-2-pyridylketone thiosemicarbazones, not only inhibit tumor growth and metastasis but also fibrous desmoplasia, which leads to chemotherapeutic resistance. The Casitas B-lineage lymphoma (c-Cbl) protein may be regulated by NDRG1, and is a crucial E3 ligase that regulates various protein tyrosine and receptor tyrosine kinases, primarily via ubiquitination. The c-Cbl protein can act as a tumor suppressor by promoting the degradation of receptor tyrosine kinases. In contrast, c-Cbl can also promote tumor development by acting as a docking protein to mediate the oncogenic c-Met/Crk/JNK and PI3K/AKT pathways. This review hypothesizes that NDRG1 could inhibit the oncogenic function of c-Cbl, which may be another mechanism of its tumor-suppressive effects.
Collapse
Affiliation(s)
- Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Des R. Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|
4
|
Effect of 8-Day Fasting on Leukocytes Expression of Genes and Proteins Involved in Iron Metabolism in Healthy Men. Int J Mol Sci 2021; 22:ijms22063248. [PMID: 33806756 PMCID: PMC8004801 DOI: 10.3390/ijms22063248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
The popularity of fasting and restricted food intake is increasing. While the body's adaptability to dietary insufficiency is crucial for health, molecular mechanisms of adaptive changes are not well understood. Here, we compared the effects of fasting and exercise on the expression of leukocyte genes and proteins involved in the storage, export, and acquisition of iron, an essential element with physiological roles. Healthy men participated in the study (age, 30-70 years; body weight, 60-100 kg; body mass index, 20-29.9 kg/m2). The participants performed an exercise test with a gradually increasing intensity until the individual maximum exercise capacity was reached, before and after 8-d fast. Blood samples were collected before, immediately after, and 3 h after exercise. Gene expression was analyzed by reverse-transcription quantitative polymerase chain reaction and protein levels were analyzed by immunobloting. Eight days of total starvation diet affected the body composition and decreased exercise capacity. Further, fasting decreased the expression of genes associated with iron storage and export, and increased the expression of genes involved in iron acquisition. Conversely, only PCBP2 protein increased after fasting; however, an upward trend was apparent for all proteins. In conclusion, the body adapts to starvation by adjusting iron economy.
Collapse
|
5
|
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020; 188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
6
|
Yu JM, Yang DQ, Wang H, Xu J, Gao Q, Hu LW, Wang F, Wang Y, Yan QC, Zhang JS, Liu Y. Prevalence and risk factors of lens opacities in rural populations living at two different altitudes in China. Int J Ophthalmol 2016; 9:610-6. [PMID: 27162738 DOI: 10.18240/ijo.2016.04.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the prevalence of and risk factors for lens opacities in populations living at two different altitudes in China. METHODS A total of 813 subjects aged ≥40y in Lhasa (Tibet Autonomous Region, China. Altitude: 3658 m) and Shaoxing (Zhejiang Province, China. Altitude: 15 m) were underwent eye examinations and interviewed in this cross-sectional study. Participants' lens opacities were graded according to the Lens Opacities Classification System II (LOCS II) and the types of opacities with LOCS II scores ≥2 were determined. Univariate and stepwise logistic regression were used to evaluate the associations of independent risk factors with lens opacities. RESULTS Lens opacities were significantly more prevalent in the high-altitude than in the low-altitude area (χ (2)=10.54, P<0.001). Lens opacities appear to develop earlier in people living at high than at low altitude. The main types of lens opacity in Lhasa and Shaoxing were mixed (23.81%) and cortical (17.87%), respectively. Independent risk factors associated with all lens opacities were age, ultraviolet (UV) radiation exposure, and educational level. Compared with participants aged 40-49y, the risk of lens opacities increased gradually from 2 to 85 times per 10y [odds ratio (OR)=2.168-84.731, P<0.05). The risk of lens opacities was about two times greater in participants with the highest UV exposure than in those with the lowest exposure (OR=2.606, P=0.001). Educational level was inversely associated with lens opacities; literacy deceased the risk by about 25% compared with illiteracy (OR=0.758, P=0.041). CONCLUSION Old age, higher UV exposure and lower educational level are important risk factors for the development of lens opacities. Lens opacities are more prevalent among high-altitude than low-altitude inhabitants.
Collapse
Affiliation(s)
- Jia-Ming Yu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - De-Qi Yang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Han Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Jun Xu
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Qian Gao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Li-Wen Hu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Fang Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yang Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Qi-Chang Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, Liaoning Province, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning Province, China
| |
Collapse
|
7
|
Huang BW, Miyazawa M, Tsuji Y. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels. Cell Signal 2014; 26:2702-9. [PMID: 25172425 DOI: 10.1016/j.cellsig.2014.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Bo-Wen Huang
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, United States
| | - Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, United States
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, United States.
| |
Collapse
|