1
|
Hu Y, Wang D, Zhang Y, Chen S, Yang X, Zhu R, Wang C. A novel polysaccharide from blueberry leaves: Extraction, structural characterization, hypolipidemic and hypoglycaemic potentials. Food Chem 2024; 460:140493. [PMID: 39053284 DOI: 10.1016/j.foodchem.2024.140493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
In this study, the structural characterization, physicochemical properties, antioxidant, hypolipidemic, and hypoglycemic potentials of polysaccharide components (BLP-1, BLP-2, and BLP-3) purified from blueberry leaf polysaccharides (BLP) were investigated. Ion chromatography results showed that BLP-1, BLP-2, and BLP-3 contained rhamnose, arabinose, galactose, glucose, and glucuronic acid. In contrast to BLP-1, BLP-2 and BLP-3 included galacturonic acid. The methylation analysis results indicated that the backbones of BLP-1, BLP-2, and BLP-3 were mainly composed of glycosidic linkages of arabinose, galactose, and glucose, which was consistent with the results of the previously determined monosaccharide composition. The in-vitro antioxidant results showed that BLP-1, BLP-2, and BLP-3 possessed antioxidant activity with the highest scavenging of -OH radicals. Furthermore, BLP-1, BLP-2, and BLP-3 showed high bile acid-binding activity and α-amylase inhibitory activity, suggesting that they have the potentials of hypolipidemic and hypoglycemic. This study provides a reference for the utilization of blueberry leaf resources.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Siyun Chen
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiangmin Yang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Rongan Zhu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Mundo Rivera VM, Tlacuahuac Juárez JR, Murillo Melo NM, Leyva Garcia N, Magaña JJ, Cordero Martínez J, Jiménez Gutierrez GE. Natural Autophagy Activators to Fight Age-Related Diseases. Cells 2024; 13:1611. [PMID: 39404375 PMCID: PMC11476028 DOI: 10.3390/cells13191611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The constant increase in the elderly population presents significant challenges in addressing new social, economic, and health problems concerning this population. With respect to health, aging is a primary risk factor for age-related diseases, which are driven by interconnected molecular hallmarks that influence the development of these diseases. One of the main mechanisms that has attracted more attention to aging is autophagy, a catabolic process that removes and recycles damaged or dysfunctional cell components to preserve cell viability. The autophagy process can be induced or deregulated in response to a wide range of internal or external stimuli, such as starvation, oxidative stress, hypoxia, damaged organelles, infectious pathogens, and aging. Natural compounds that promote the stimulation of autophagy regulatory pathways, such as mTOR, FoxO1/3, AMPK, and Sirt1, lead to increased levels of essential proteins such as Beclin-1 and LC3, as well as a decrease in p62. These changes indicate the activation of autophagic flux, which is known to be decreased in cardiovascular diseases, neurodegeneration, and cataracts. The regulated administration of natural compounds offers an adjuvant therapeutic alternative in age-related diseases; however, more experimental evidence is needed to support and confirm these health benefits. Hence, this review aims to highlight the potential benefits of natural compounds in regulating autophagy pathways as an alternative approach to combating age-related diseases.
Collapse
Affiliation(s)
- Vianey M. Mundo Rivera
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
| | - José Roberto Tlacuahuac Juárez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Nadia Mireya Murillo Melo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico; (V.M.M.R.); (N.M.M.M.); (J.J.M.)
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Joaquín Cordero Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | |
Collapse
|
3
|
Mandal B, Das R, Mondal S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:373-391. [PMID: 38354975 DOI: 10.1016/j.pharma.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.
Collapse
Affiliation(s)
- Bitasta Mandal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Rakesh Das
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Sandip Mondal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| |
Collapse
|
4
|
Tang Y, Fang C, Shi J, Chen H, Chen X, Yao X. Antioxidant potential of chlorogenic acid in Age-Related eye diseases. Pharmacol Res Perspect 2024; 12:e1162. [PMID: 38189160 PMCID: PMC10772849 DOI: 10.1002/prp2.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Oxidative stress is an important mechanism of aging, and in turn, aging can also aggravate oxidative stress, which leads to a vicious cycle. In the process of the brain converting light into visual signals, the eye is stimulated by harmful blue-light radiation directly. Thus, the eye is especially vulnerable to oxidative stress and becomes one of the organs most seriously involved during the aging process. Cataracts, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and dry eye are inextricably linked to the aging process and oxidative stress. Chlorogenic acid (CGA) has been demonstrated to have antioxidant and anti-inflammatory activities, and its validity has been established experimentally in numerous fields, including cardiovascular disease, metabolic disorders, cancers, and other chronic diseases. There has previously been evidence of CGA's therapeutic effect in the field of ophthalmopathy. Considering that many ophthalmic drugs lead to systemic side effects, CGA may act as a natural exogenous antioxidant for patients to take regularly, controlling their condition while minimizing side effects. In this paper, in vitro and in vivo studies of CGA in the treatment of age-related eye diseases are reviewed, and the prospects of CGA's antioxidant application for the eye are discussed. The aim of this review is to summarize the relevant knowledge and provide theoretical support for future research.
Collapse
Affiliation(s)
- Yu Tang
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Chi Fang
- Department of Scientific ResearchThe First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Jian Shi
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Huimei Chen
- Hunan University of Chinese MedicineChangshaChina
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese MedicineChangshaChina
| | - Xiong Chen
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Xiaolei Yao
- Department of OphthalmologyThe First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
5
|
Czernicka M, Sowa-Borowiec P, Puchalski C, Czerniakowski ZW. Content of Bioactive Compounds in Highbush Blueberry Vaccinium corymbosum L. Leaves as a Potential Raw Material for Food Technology or Pharmaceutical Industry. Foods 2024; 13:246. [PMID: 38254547 PMCID: PMC10814797 DOI: 10.3390/foods13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study was performed to investigate the content of selected phenolic compounds, antioxidant activity and the levels of arbutin and hydroquinone in 25 varieties of highbush blueberry (Vaccinium corymbosum) leaf samples. An analysis of the bioactive components was performed using the HPLC technique and the antioxidant activity was determined via spectrophotometric methods. The content of chlorogenic acid in the analysed leaf extracts ranged from 52.76 mg/g (Spartan variety) to 32.37 mg/g (Nelson variety) and was present in the highest concentration among all the analysed phenolic acids. Particularly large levels of isoquercetin were found in the Aurora, Ivanhoe and Toro varieties (28.40 mg/g, 26.24 mg/g and 21.57 mg/g, respectively). An exceptionally high rutin content (p < 0.05) was found in the Ivanhoe variety (27.19 mg/g) as compared to the other varieties, where it ranged from 2.06 mg/g (Earliblue and Patriot varieties) to 10.55 mg/g (Bluejay variety). The Patriot variety was determined to possess the highest antioxidative activity using the FRAP method (1086.15 μmol Trolox/g d.w.) and based on its DPPH radical scavenging activity (1124.17 μmol Trolox/g d.w.). The total phenolic content (TPC) determined via spectrophotometry ranged from 48.11 mg GAE/g d.w. (Elizabeth variety) to 177.31 GAE/g d.w. (Patriot variety). The arbutin content in the leaves of all tested varieties exceeded 2%, so it can be concluded that they constitute a stable source of arbutin. Three varieties (Bonus, Chanticleer and Herbert) can be considered a potential alternative to bearberry and lingonberry leaves. The hydroquinone content in the analysed extracts was determined to be at a lower level. V. corymbosum leaves can be considered an interesting herbal material for use in traditional herbal medicinal products but not directly for food products and dietary supplements.
Collapse
Affiliation(s)
- Maria Czernicka
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Patrycja Sowa-Borowiec
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland;
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
6
|
Khil NHS, Sharma S, Sharma PK, Alam MA. Neoteric Role of Quercetin in Visual Disorders. Curr Drug Res Rev 2024; 16:164-174. [PMID: 37608659 DOI: 10.2174/2589977515666230822114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin's therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Noor Hassan Sulaiman Khil
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Chaiyarit S, Phuangkham S, Thongboonkerd V. Quercetin inhibits calcium oxalate crystallization and growth but promotes crystal aggregation and invasion. Curr Res Food Sci 2023; 8:100650. [PMID: 38145155 PMCID: PMC10733680 DOI: 10.1016/j.crfs.2023.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Recent evidence has shown an association between kidney stone pathogenesis and oxidative stress. Many anti-oxidants have been studied with an aim for stone prevention. Quercetin, a natural flavonol, is one among those eminent anti-oxidants with satisfactory anti-inflammatory property to cope with renal tissue injury in kidney stone disease. Nevertheless, its direct effect (if any) on calcium oxalate (CaOx) crystals and the stone formation mechanism had not been previously explored. This study has addressed the ability of quercetin at various concentrations (2.5, 5, 10, 20, 40, 80 and 160 μM) to directly modulate CaOx crystallization, growth, aggregation, adhesion on kidney cells, and invasion through the matrix. The data have shown that quercetin significantly inhibits CaOx crystallization and crystal growth but promotes crystal aggregation in concentration-dependent manner. However, quercetin at all these concentrations do not affect CaOx adhesion on kidney cells. For the invasion, quercetin at all concentrations constantly promotes CaOx invasion through the matrix without concentration-dependent pattern. These discoveries have demonstrated for the first time that quercetin has direct but dual modulatory effects on CaOx crystals. While quercetin inhibits CaOx crystallization and growth, on the other hand, it promotes CaOx crystal aggregation and invasion through the matrix. These data highlight the role for quercetin in direct modulation of the CaOx crystals that may intervene the stone pathogenesis.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Yu HR, Chen BH. Analysis of Phenolic Acids and Flavonoids in Rabbiteye Blueberry Leaves by UPLC-MS/MS and Preparation of Nanoemulsions and Extracts for Improving Antiaging Effects in Mice. Foods 2023; 12:foods12101942. [PMID: 37238760 DOI: 10.3390/foods12101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Rabbiteye blueberry leaves, a waste produced after harvest of blueberry, are rich in polyphenols. This study aims to analyze phenolic acids and flavonoids in blueberry leaves by UPLC-MS/MS and prepare nanoemulsions for determining anti-aging activity in mice. Overall, 30% ethanol was the most suitable extraction solvent for total phenolic acids and total flavonoids. A total of four phenolic acids and four flavonoids were separated within seven minutes for further identification and quantitation by UPLC-MS/MS in selective reaction monitoring (SRM) mode, with 3-O-caffeoylquinic acid being present in the highest amount (6474.2 μg/g), followed by quercetin-3-O-galactoside (1943.9 μg/g), quercetin-3-O-rutinoside (1036.6 μg/g), quercetin-3-O-glucoside (867.2 μg/g), 5-O-caffeoylquinic acid (815.8 μg/g), kaempferol-3-O-glucoside (309.7 μg/g), 3,5-dicaffeoylquinic acid (195.3 μg/g), and 4,5-dicaffeoylquinic acid (60.8 μg/g). The blueberry nanoemulsion was prepared by using an appropriate ratio of soybean oil, Tween 80, glycerol, ethanol, and water at 1.2%, 8%, 2%, 2%, and 86.8%, respectively, and mixing with dried blueberry extract, with the mean particle size and zeta potential being 16 nm and -54 mV, respectively. A high stability was observed during storage of nanoemulsion for 90 days at 4 °C and heated at 100 °C for 2 h. An animal study revealed that this nanoemulsion could elevate dopamine content in mice brain as well as superoxide dismutase, glutathione peroxidase, and catalase activities in mice liver while reducing the contents of malondialdehyde and protein carbonyl in mice brains. Collectively, the high-dose nanoemulsion possessed the highest efficiency in improving mice aging with a promising potential for development into a health food.
Collapse
Affiliation(s)
- Hsin-Rong Yu
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Motyleva SM, Evdokimenko SN, Podgaetsky MA, Tumaeva TA, Burmenko YV, Svistunova NY, Panischeva DV, Kulikov IM. Mineral composition of repair raspberry (<i>Rubus idaeus</i> L.) fruits. Vavilovskii Zhurnal Genet Selektsii 2022; 26:622-629. [DOI: 10.18699/vjgb-22-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- S. M. Motyleva
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - S. N. Evdokimenko
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - M. A. Podgaetsky
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - T. A. Tumaeva
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - Y. V. Burmenko
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - N. Y. Svistunova
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - D. V. Panischeva
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| | - I. M. Kulikov
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery
| |
Collapse
|
10
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
11
|
Imelda E, Idroes R, Khairan K, Lubis RR, Abas AH, Nursalim AJ, Rafi M, Tallei TE. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel) 2022; 11:antiox11071285. [PMID: 35883773 PMCID: PMC9311900 DOI: 10.3390/antiox11071285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
A cataract is a condition that causes 17 million people to experience blindness and is the most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural antioxidant extracts for cataract therapy may be investigated further in light of these findings, which show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose reductase and preventing apoptosis of the eye lens.
Collapse
Affiliation(s)
- Eva Imelda
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia
- Department of Ophthalmology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence:
| | - Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Rodiah Rahmawaty Lubis
- Department of Ophthalmology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia;
| | - Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| | - Ade John Nursalim
- Department of Ophthalmology, General Hospital Prof. Dr. R. D. Kandou, Manado 955234, Indonesia;
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia; (A.H.A.); (T.E.T.)
| |
Collapse
|
12
|
Factor analysis and cluster analysis of mineral elements contents in different blueberry cultivars. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Micropropagation of Vaccinium corymbosum L.: An Alternative Procedure for the Production of Secondary Metabolites. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro culture has become a dependable approach for the mass production of plant material as the market for innovative plant-derived medicinal approaches has grown significantly. Furthermore, because it permits manipulation of biosynthetic routes to boost the production and accumulation of certain compounds, this technology has enormous potential for the manufacture of natural bioactive chemicals. As a result, the goal of this study was to develop an efficient micropropagation system for biomass production and to investigate the accumulation of bioactive compounds from Vaccinium corymbosum L., Duke and Hortblue Petite cultivars. Two in vitro plant tissue culture systems were used for shoots production: a solid medium (5 g/L Plant agar) and liquid medium (Plantform bioreactor). The culture medium used was Woddy Plant Medium (WPM) supplemented with two growth regulators: 0.5 mg/L and 1 mg/L zeatina (Z) and 5 mg/L N6-(2-Isopentenyl) adenine (2iP). The content of phenolic compounds, carotenoids, and chlorophylls of the in vitro shoot extracts were examined via the HPLC-DAD-MS/MS technique. The results showed that cv. Hortblue Petite produced a higher amount of biomass compared with cv. Duke, on all variants of culture media in both systems (solid and liquid), while the shoots extract of the Duke variety in the liquid culture system (under all concentrations of growth regulators) had the highest content of total phenolic compounds (16,665.61 ± 424.93 μg/g). In the case of the lipophilic compounds analysed (chlorophylls and carotenoids), the solid medium reported the highest values, whereas media supplemented with 0.5 mg/L Z was proved to have the richest total content for both cultivars.
Collapse
|
14
|
Oliva E, Viteritti E, Fanti F, Eugelio F, Pepe A, Palmieri S, Sergi M, Compagnone D. Targeted and semi-untargeted determination of phenolic compounds in plant matrices by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1651:462315. [PMID: 34157475 DOI: 10.1016/j.chroma.2021.462315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
In this work two different acquisition approaches were used for the quantification and/or tentative identification of phenolic compounds (PCs) in plant matrices by HPLC-MS/MS. A targeted approach, based on MRM acquisition mode, was used for the identification and quantification of a list of target analytes by comparison with standards; a semi-targeted approach was also developed by the precursor ion scan and neutral loss for the tentative identification of compounds not included in the target list. Analysis of phenolic content in three different plant matrices (curry leaves, hemp and blueberry) was carried out. The extraction and clean-up steps were set up according to the characteristics of the sample allowing to minimize the interfering compounds present in such complex matrices, as proved by the low matrix effect obtained (<16%) and recovery values ranging from 45% to 98% for all the analytes. This approach provided a sensitive and robust quantitative analysis of the target compounds with LOQs between 0.0002 and 0.05 ng mg-1, which allowed the identification and quantification of several hydroxycinnamic and hydroxybenzoic acids, in addition to numerous flavonoids in all three matrices. Furthermore, different moieties were considered as neutral losses or as precursor ions in semi-targeted MS/MS approach, providing the putative identification of different glycosylated forms of flavonoids, such as luteolin-galactoside and diosmin in all three matrices, while apigenin-glucuronide was detected in hemp and quercetin-glucuronide in blueberry. A further study was carried out by MS3, allowing the discrimination of compounds with similar aglycones, such as luteolin and kaempferol.
Collapse
Affiliation(s)
- Eleonora Oliva
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Eduardo Viteritti
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Federico Fanti
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Fabiola Eugelio
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Alessia Pepe
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Sara Palmieri
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Manuel Sergi
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy.
| | - Dario Compagnone
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| |
Collapse
|
15
|
Protective Effect of Quercetin on Sodium Iodate-Induced Retinal Apoptosis through the Reactive Oxygen Species-Mediated Mitochondrion-Dependent Pathway. Int J Mol Sci 2021; 22:ijms22084056. [PMID: 33919990 PMCID: PMC8071060 DOI: 10.3390/ijms22084056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to gradual central vision loss and is the third leading cause of irreversible blindness worldwide. The underlying mechanisms for this progressive neurodegenerative disease remain unclear and there is currently no preventive treatment for dry AMD. Sodium iodate (NaIO3) has been reported to induce AMD-like retinal pathology in mice. We established a mouse model for AMD to evaluate the effects of quercetin on NaIO3-induced retinal apoptosis, and to investigate the pertinent underlying mechanisms. Our in vitro results indicated that quercetin protected human retinal pigment epithelium (ARPE-19) cells from NaIO3-induced apoptosis by inhibiting reactive oxygen species production and loss of mitochondrial membrane potential as detected by Annexin V-FITC/PI flow cytometry. We also evaluated the relative expression of proteins in the apoptosis pathway. Quercetin downregulated the protein expressions of Bax, cleaved caspase-3, and cleaved PARP and upregulated the expression of Bcl-2 through reduced PI3K and pAKT expressions. Furthermore, our in vivo results indicated that quercetin improved retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear layer, whereas the expression of caspase-3 was inhibited. Taken together, these results demonstrate that quercetin could protect retinal pigment epithelium and the retina from NaIO3-induced cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction, involving the PI3K/AKT signaling pathway. This suggests that quercetin has the potential to prevent and delay AMD and other retinal diseases involving NaIO3-mediated apoptosis.
Collapse
|
16
|
Noni (Morinda citrifolia) fruit polysaccharide films containing blueberry (Vaccinium corymbosum) leaf extract as an antioxidant packaging material. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 2021; 137:111371. [PMID: 33561647 DOI: 10.1016/j.biopha.2021.111371] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Quercetin is a natural flavonol antioxidant found in various plant sources and food samples. It is well known for its notable curative effects on the treatment of ophthalmic diseases due to various biological activities, such as antioxidant, anti-inflammatory, and anti-fibrosis activities. This review will discuss the latest developments in therapeutic quercetin for the treatment of keratoconus, Graves' orbitopathy, ocular surface, cataracts, glaucoma, retinoblastoma, and other retinal diseases.
Collapse
Affiliation(s)
- Lianghui Zhao
- Weifang Medical University, Weifang, Shandong 261021, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
18
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Anbukkarasi M, Thomas PA, Teresa PA, Anand T, Geraldine P. Comparison of the efficacy of a Tabernaemontana divaricata extract and of biosynthesized silver nanoparticles in preventing cataract formation in an in-vivo system of selenite-induced cataractogenesis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Li H, Park HM, Ji HS, Han J, Kim SK, Park HY, Jeong TS. Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice. Nutr Res 2020; 73:83-96. [DOI: 10.1016/j.nutres.2019.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
21
|
Olchawa MM, Krzysztynska-Kuleta OI, Mokrzynski KT, Sarna PM, Sarna TJ. Quercetin protects ARPE-19 cells against photic stress mediated by the products of rhodopsin photobleaching. Photochem Photobiol Sci 2020; 19:1022-1034. [DOI: 10.1039/d0pp00165a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to intense light could increase the risk of phototoxic reactions mediated by rhodopsin photobleaching products (RPBP) that might accumulate in photoreceptor outer segments (POS).
Collapse
Affiliation(s)
- Magdalena M. Olchawa
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Olga I. Krzysztynska-Kuleta
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Krystian T. Mokrzynski
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| | - Piotr M. Sarna
- Fluid Mechanics Laboratory
- Faculty of Mechanical Engineering
- Cracow University of Technology
- Poland
| | - Tadeusz J. Sarna
- Department of Biophysics
- Faculty of Biochemistry
- Biophysics and Biotechnology
- Jagiellonian University
- 30-387 Krakow
| |
Collapse
|
22
|
Anand T, Anbukkarasi M, Teresa PA, Thomas PA, Geraldine P. Evaluation of the Putative Efficacy of a Methanolic Extract of Ocimum Basilicum in Preventing Disruption of Structural Proteins in an in Vitro System of Selenite-induced Cataractogenesis. Curr Eye Res 2019; 45:696-704. [PMID: 31770036 DOI: 10.1080/02713683.2019.1698054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To evaluate whether a methanolic extract of Ocimum basilicum (OB) leaves prevented lenticular protein alterations in an in-vitro model of selenite-induced cataractogenesis.Materials and Methods: Transparent lenses extirpated from Wistar rats were divided into three groups: control; selenite only; treated. Control lenses were cultured in Dulbecco's modified Eagle's medium (DMEM) alone, selenite only lenses were cultured in DMEM containing sodium selenite only (100 µM selenite/ml DMEM) and treated lenses were cultured in DMEM containing sodium selenite and the methanolic extract of OB leaves (200 µg of extract/ml DMEM); all lenses were cultured for 24 h and then processed. The parameters assessed in lenticular homogenates were lenticular protein sulfhydryl and carbonyl content, calcium level, insoluble to soluble protein ratio, sodium dodecyl sulphate-polyacrylamide gel electrophoretic (SDS-PAGE) patterns of lenticular proteins, and mRNA transcript and protein levels of αA-crystallin and βB1-crystallins.Results: Selenite only lenses exhibited alterations in all parameters assessed. Treated lenses exhibited values for these parameters that were comparable to those noted in normal control lenses.Conclusions: The methanolic extract of OB leaves prevented alterations in lenticular protein sulfhydryl and carbonyl content, calcium level, insoluble to soluble protein ratio, SDS-PAGE patterns of lenticular proteins, and expression of αA-crystallin and βB1-crystallin gene and proteins in cultured selenite-challenged lenses. OB may be further evaluated as a promising agent for the prevention of cataract.
Collapse
Affiliation(s)
- Thiraviyam Anand
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Muniyandi Anbukkarasi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - P Archana Teresa
- Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli, India
| | | | - Pitchairaj Geraldine
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
23
|
Jo YD, Kim J, Choung SY. Protective effects of quercetin-3-O-α-l-arabinopyranoside against UVA induced apoptosis via regulating inflammatory pathways in ARPE-19 cells and Balb/c mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal Plants and Natural Products Used in Cataract Management. Front Pharmacol 2019; 10:466. [PMID: 31263410 PMCID: PMC6585469 DOI: 10.3389/fphar.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cataract is the leading reason of blindness worldwide and is defined by the presence of any lens opacities or loss of transparency. The most common symptoms of cataract are impaired vision, decreased contrast sensitivity, color disturbance, and glare. Oxidative stress is among the main mechanisms involved in the development of age-related cataract. Surgery through phacoemulsification and intraocular lens implantation is the most effective method for cataract treatment, however, there are chances of serious complications and irreversible loss of vision associated with the surgery. Natural compounds consisting of antioxidant or anti-inflammatory secondary metabolites can serve as potential leads for anticataract agents. In this review, we tried to document medicinal plants and plant-based natural products used for cataract treatment worldwide, which are gathered from available ethnopharmacological/ethnobotanical data. We have extensively explored a number of recognized databases like Scifinder, PubMed, Science Direct, Google Scholar, and Scopus by using keywords and phrases such as “cataract”, “blindness”, “traditional medicine”, “ethnopharmacology”, “ethnobotany”, “herbs”, “medicinal plants”, or other relevant terms, and summarized the plants/phytoconstituents that are evaluated in different models of cataract and also tabulated 44 plants that are traditionally used in cataract in various folklore medical practices. Moreover, we also categorized the plants according to scientific studies carried out in different cataract models with their mechanisms of action.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ovidiu Samoilă
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gocan
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Dan Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Anatomy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Ștefănescu BE, Szabo K, Mocan A, Crişan G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019; 24:E2046. [PMID: 31146359 PMCID: PMC6600139 DOI: 10.3390/molecules24112046] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
Some species of the Ericaceae family have been intensively studied because of the beneficial health impact, known since ancient times, of their chemical components. Since most studies focus on the effects of fruit consumption, this review aims to highlight the phenolic components present in the leaves. For this purpose, five species from Ericaceae family (bilberry-Vaccinium myrtillus L., lingonberry-V. vitis-idaea L., bog bilberry-V. uliginosum L., blueberry-V. corymbosum L. and bearberry-Arctostapylos uva-ursi L.) were considered, four of which can be found in spontaneous flora. The chemical composition of the leaves revealed three major phenolic compounds: chlorogenic acid, quercetin and arbutin. The health promoting functions of these compounds, such as antioxidant and anti-inflammatory properties that could have preventive effects for cardiovascular disease, neurodegenerative disorders, cancer, and obesity, have been exemplified by both in vitro and in vivo studies in this review. Furthermore, the importance of bioaccessibility and bioavailability of the phenolic compounds have been summarized. The findings highlight the fact that leaves of some Ericaceae species deserve increased attention and should be studied more profoundly for their biological activities, especially those from spontaneous flora.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Gianina Crişan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
| |
Collapse
|
26
|
Cai W, Yu D, Fan J, Liang X, Jin H, Liu C, Zhu M, Shen T, Zhang R, Hu W, Wei Q, Yu J. Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4149-4161. [PMID: 30584279 PMCID: PMC6287523 DOI: 10.2147/dddt.s185618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose The purpose of this study was to evaluate the effect and mechanism of quercetin on TGF-β1-induced retinal pigment epithelial (RPE) cell proliferation, migration, and extracellular matrix secretion. Materials and methods Cell counting kit-8, transwell, wound-healing assays, and ELISA were used to assess viability, migration, and collagen I secretion, respectively. Western blot analysis and qPCR were employed to detect mRNA and protein expression levels, respectively. Results Quercetin suppressed TGF-β1-induced cell proliferation, migration, and collagen I secretion. The results also showed that mRNA and protein expression of epithelial–mesenchymal transition (EMT)-related markers such as alpha-smooth muscle actin and N-cadherin was downregulated by quercetin in TGF-β1-treated RPE cells; conversely, quercetin upregulated the expression of E-cadherin and tight junction protein 1 (ZO-1). In addition, quercetin could inhibit mRNA and protein expression of matrix metalloproteinases. Quercetin may reverse the progression of EMT via the Smad2/3 pathway. Conclusion Our results demonstrate the protective effects of quercetin on RPE cell EMT, revealing a potential therapeutic agent for proliferative vitreoretinopathy treatment.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jiaqi Fan
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Chang Liu
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Weinan Hu
- Department of Ophthalmology, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
27
|
Kim J, Jin HL, Jang DS, Jeong KW, Choung SY. Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice. Food Funct 2018. [PMID: 29541735 DOI: 10.1039/c7fo01958k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Age-related macular degeneration (AMD) is among the increasing number of diseases causing irreversible blindness in the elderly. Dry AMD is characterized by the accumulation of lipofuscin in retinal pigment epithelium (RPE) cells. N-Retinylidene-N-retinylethanolamine (A2E), a component of lipofuscin, is oxidized to oxo-A2E under blue light illumination, leading to retinal cell death. The aim of this study was to investigate the protective effect and mechanism of quercetin-3-O-α-l-arabinopyranoside (QA) against blue light (BL)-induced damage in both RPE cells and mice models. Treatment by QA inhibited A2E uptake in RPE cells, as determined by a decrease in fluorescence intensity. QA also protected A2E-laden RPE cells against BL-induced apoptosis. QA inhibited C3 complement activation and poly (ADP-ribose) polymerase (PARP) cleavage, as determined by western blotting. QA showed an inhibitory effect on AP1 and NF-kB activity as estimated in a reporter gene assay. In addition, QA activated the gene expression of aryl hydrocarbon receptor target genes (CYP1A1, CYP1B1) in TCDD-treated RPE cells. In the mice model, oral administration of QA protected against retinal degeneration induced by BL exposure as determined by histological analyses (thickness of retinal layers and immunostaining for caspase-3). In addition, QA inhibited apoptosis and inflammation via inhibition of NF-kB p65 translocation, C3 activation, and PARP cleavage. Collectively, these results revealed the protective mechanism of QA against BL-induced retinal damage both in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | | | | | | | | |
Collapse
|
28
|
Chemerovski-Glikman M, Mimouni M, Dagan Y, Haj E, Vainer I, Allon R, Blumenthal EZ, Adler-Abramovich L, Segal D, Gazit E, Zayit-Soudry S. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo. Sci Rep 2018; 8:9341. [PMID: 29921877 PMCID: PMC6008418 DOI: 10.1038/s41598-018-27516-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.
Collapse
Affiliation(s)
- Marina Chemerovski-Glikman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Yarden Dagan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Esraa Haj
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Igor Vainer
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Raviv Allon
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel
- Sagol Interdisciplinary School of Neurosciences, Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, 69978, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
29
|
Vallejo CV, Delgado OD, Rollán GC, Rodríguez-Vaquero MJ. Control of Hanseniaspora osmophila and Starmerella bacillaris in strawberry juice using blueberry polyphenols. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Ştefănescu Braic R, Vari C, Imre S, Huţanu A, Fogarasi E, Todea T, Groşan A, Eşianu S, Laczkó-Zöld E, Dogaru M. Vaccinium Extracts as Modulators in Experimental Type 1 Diabetes. J Med Food 2018; 21:1106-1112. [PMID: 29847743 DOI: 10.1089/jmf.2017.0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antihyperglycemic effects of four extracts obtained from leaves and fruits of Vaccinium myrtillus and Vaccinium corymbosum were assessed in diabetic rats. In addition, the effects of extracts on diabetic-related complications such as the development of diabetic cataract and oxidative stress were evaluated. Type 1 diabetes was induced with a single dose of streptozotocin in Wistar rats. The rats were randomly divided into seven equal groups: NC-normal control, DC-diabetic control, PC-positive control treated with metformin, VML-received V. myrtillus leaf extract, VMLF-received VML and fruit extract, VCL-received V. corymbosum leaf extract, and VCLF-received VCL and fruit extract. Body weight and glucose levels were monitored every second week. After 8 weeks of treatment, serum glucose, insulin, and malondialdehyde were measured. Lenses were removed after sacrifice and eight lenses from each group were randomly selected for evaluation of cataract development. A decrease in body weight was observed in all diabetic groups in the first weeks. In the VML group, no significant decrease was observed. Glucose levels during the experiment were high in DC, PC, and VCL groups, with no improvement during the 8 weeks. In VML, VMLF, and VCLF groups, a decrease in blood glucose levels was observed. Similar results regarding serum insulin and glucose levels at the end of the experiment were observed within groups. V. myrtillus extracts prevented the development of cataract compared with the DC group (P < .05).
Collapse
Affiliation(s)
- Ruxandra Ştefănescu Braic
- 1 Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Camil Vari
- 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Silvia Imre
- 3 Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Adina Huţanu
- 4 Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Erzsebet Fogarasi
- 5 Department of Toxicology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Timea Todea
- 6 Department of Ophthalmology, Topmed Medical Center , Târgu Mureş, Romania
| | - Alexandra Groşan
- 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Sigrid Eşianu
- 1 Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Eszter Laczkó-Zöld
- 1 Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| | - Maria Dogaru
- 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy Târgu Mureş , Târgu Mureş, Romania
| |
Collapse
|
31
|
Pereira CC, do Nascimento da Silva E, de Souza AO, Vieira MA, Ribeiro AS, Cadore S. Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Zheng X, Renslow RS, Makola MM, Webb IK, Deng L, Thomas DG, Govind N, Ibrahim YM, Kabanda MM, Dubery IA, Heyman HM, Smith RD, Madala NE, Baker ES. Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem Lett 2017; 8:1381-1388. [PMID: 28267339 PMCID: PMC5627994 DOI: 10.1021/acs.jpclett.6b03015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the recently uncovered health benefits and anti-HIV activities of dicaffeoylquinic acids (diCQAs), understanding their structures and functions is of great interest for drug discovery efforts. DiCQAs are analytically challenging to identify and quantify since they commonly exist as a diverse mixture of positional and geometric (cis/trans) isomers. In this work, we utilized ion mobility spectrometry coupled with mass spectrometry to separate the various isomers before and after UV irradiation. The experimental collision cross sections were then compared with theoretical structures to differentiate and identify the diCQA isomers. Our analyses found that naturally the diCQAs existed predominantly as trans/trans isomers, but after 3 h of UV irradiation, cis/cis, cis/trans, trans/cis, and trans/trans isomers were all present in the mixture. This is the first report of successful differentiation of cis/trans diCQA isomers individually, which shows the great promise of IMS coupled with theoretical calculations for determining the structure and activity relationships of different isomers in drug discovery studies.
Collapse
Affiliation(s)
- Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan S. Renslow
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mpho M. Makola
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ian K. Webb
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Liulin Deng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Dennis G. Thomas
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Niranjan Govind
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M. Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mwadham M. Kabanda
- Department of Chemistry, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, School of Mathematical and Physical Science, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Heino M. Heyman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Corresponding Authors: (E.S.B) Address: 902 Battelle Blvd., P.O. Box 999, MSIN K8-98 Richland, WA 99352. Phone: 509-371-6219; . (N.E.M.) Address: P.O. Box 524, Auckland Park, 2006, South Africa. Phone: +27115594573;
| | - Erin S. Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Corresponding Authors: (E.S.B) Address: 902 Battelle Blvd., P.O. Box 999, MSIN K8-98 Richland, WA 99352. Phone: 509-371-6219; . (N.E.M.) Address: P.O. Box 524, Auckland Park, 2006, South Africa. Phone: +27115594573;
| |
Collapse
|
33
|
Aires A, Carvalho R, Saavedra MJ. Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alfredo Aires
- Centre for the Research and Technology for Agro-Environment and Biological Sciences, CITAB; Universidade de Trás-os-Montes e Alto Douro, UTAD; Quinta de Prados; Vila Real 5000-801 Portugal
| | - Rosa Carvalho
- Agronomy Department; Universidade de Trás-os-Montes e Alto Douro, UTAD; Quinta de Prados; Vila Real 5000-801 Portugal
| | - Maria José Saavedra
- Animal and Veterinary Research Centre; CECAV; Universidade de Trás-os-Montes e Alto Douro, UTAD; Quinta de Prados; Vila Real 5000-801 Portugal
| |
Collapse
|
34
|
Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants (Basel) 2016; 5:antiox5020017. [PMID: 27258314 PMCID: PMC4931538 DOI: 10.3390/antiox5020017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.
Collapse
|