1
|
Suppression of EZH2 inhibits TGF-β1-induced EMT in human retinal pigment epithelial cells. Exp Eye Res 2022; 222:109158. [PMID: 35780904 DOI: 10.1016/j.exer.2022.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-β1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-β1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-β1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.
Collapse
|
2
|
Tichotová L, Studenovska H, Petrovski G, Popelka Š, Nemesh Y, Sedláčková M, Drutovič S, Rohiwal S, Jendelová P, Erceg S, Brymová A, Artero‐Castro A, Lytvynchuk L, Straňák Z, Ellederová Z, Motlík J, Ardan T. Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds. Acta Ophthalmol 2021; 100:e1172-e1185. [PMID: 34687141 DOI: 10.1111/aos.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.
Collapse
Affiliation(s)
- Lucie Tichotová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Goran Petrovski
- Center for Eye Research Department of Ophthalmology Oslo University Hospital and Institute for Clinical Medicine University of Oslo Oslo Norway
| | - Štěpán Popelka
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Yaroslav Nemesh
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Miroslava Sedláčková
- Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
| | - Saskia Drutovič
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Sonali Rohiwal
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Pavla Jendelová
- Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Slaven Erceg
- Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague Czech Republic
- Stem Cell Therapies in Neurodegenerative Diseases Lab Research Center ‘Principe Felipe’ Valencia Spain
| | - Anna Brymová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Ana Artero‐Castro
- Stem Cell Therapies in Neurodegenerative Diseases Lab Research Center ‘Principe Felipe’ Valencia Spain
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology Justus‐Liebig‐University Giessen University Hospital Giessen and Marburg Giessen Germany
| | - Zbyněk Straňák
- Ophthalmology Department of 3rd Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Zdeňka Ellederová
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Jan Motlík
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| | - Taras Ardan
- Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
| |
Collapse
|
3
|
Chtcheglova LA, Ohlmann A, Boytsov D, Hinterdorfer P, Priglinger SG, Priglinger CS. Nanoscopic Approach to Study the Early Stages of Epithelial to Mesenchymal Transition (EMT) of Human Retinal Pigment Epithelial (RPE) Cells In Vitro. Life (Basel) 2020; 10:E128. [PMID: 32751632 PMCID: PMC7460373 DOI: 10.3390/life10080128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
The maintenance of visual function is supported by the proper functioning of the retinal pigment epithelium (RPE), representing a mosaic of polarized cuboidal postmitotic cells. Damage factors such as inflammation, aging, or injury can initiate the migration and proliferation of RPE cells, whereas they undergo a pseudo-metastatic transformation or an epithelial to mesenchymal transition (EMT) from cuboidal epithelioid into fibroblast-like or macrophage-like cells. This process is recognized as a key feature in several severe ocular pathologies, and is mimicked by placing RPE cells in culture, which provides a reasonable and well-characterized in vitro model for a type 2 EMT. The most obvious characteristic of EMT is the cell phenotype switching, accompanied by the cytoskeletal reorganization with changes in size, shape, and geometry. Atomic force microscopy (AFM) has the salient ability to label-free explore these characteristics. Based on our AFM results supported by the genetic analysis of specific RPE differentiation markers, we elucidate a scheme for gradual transformation from the cobblestone to fibroblast-like phenotype. Structural changes in the actin cytoskeletal reorganization at the early stages of EMT lead to the development of characteristic geodomes, a finding that may reflect an increased propensity of RPE cells to undergo further EMT and thus become of diagnostic significance.
Collapse
Affiliation(s)
- Lilia A. Chtcheglova
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Andreas Ohlmann
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Danila Boytsov
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Siegfried G. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Claudia S. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| |
Collapse
|
4
|
Zhang L, Xu S, Wu X, Chen J, Guo X, Cao Y, Zhang Z, Yan J, Cheng J, Han Z. Combined Treatment With 2-(2-Benzofu-Ranyl)-2-Imidazoline and Recombinant Tissue Plasminogen Activator Protects Blood-Brain Barrier Integrity in a Rat Model of Embolic Middle Cerebral Artery Occlusion. Front Pharmacol 2020; 11:801. [PMID: 32595494 PMCID: PMC7303334 DOI: 10.3389/fphar.2020.00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant tissue plasminogen activator (rt-PA) is used to treat acute ischemic stroke but is only effective if administered within 4.5 h after stroke onset. Delayed rt-PA treatment causes blood-brain barrier (BBB) disruption and hemorrhagic transformation. The compound 2-(-2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered antagonist of high-affinity postsynaptic N-methyl-D-aspartate (NMDA) receptors, has been shown to have neuroprotective effects in ischemia. Here, we investigated whether combining 2-BFI and rt-PA can ameliorate BBB disruption and prolong the therapeutic window in a rat model of embolic middle cerebral artery occlusion (eMCAO). Ischemia was induced in male Sprague Dawley rats by eMCAO, after which they were treated with 2-BFI (3 mg/kg) at 0.5 h in combination with rt-PA (10 mg/kg) at 6 or 8 h. Control rats were treated with saline or 2-BFI or rt-PA. Combined therapy with 2-BFI and rt-PA (6 h) reduced the infarct volume, denatured cell index, BBB permeability, and brain edema. This was associated with increased expression of aquaporin 4 (AQP4) and tight junction proteins (occludin and ZO-1) and downregulation of intercellular adhesion molecule 1 (ICAM-1) and matrix metalloproteinases 2 and 9 (MMP2 and MMP9). We conclude that 2-BFI protects the BBB from damage caused by delayed rt-PA treatment in ischemia. 2-BFI may therefore extend the therapeutic window up to 6 h after stroke onset in rats and may be a promising therapeutic strategy for humans. However, mechanisms to explain the effects oberved in the present study are not yet elucidated.
Collapse
Affiliation(s)
- Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of General Intensive Care Unit, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shasha Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Wu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jueyue Yan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Waugh N, Loveman E, Colquitt J, Royle P, Yeong JL, Hoad G, Lois N. Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol Assess 2019; 22:1-168. [PMID: 29846169 DOI: 10.3310/hta22270] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual loss in older people. Advanced AMD takes two forms, neovascular (wet) and atrophic (dry). Stargardt disease (STGD) is the commonest form of inherited macular dystrophy. OBJECTIVE To carry out a systematic review of treatments for dry AMD and STGD, and to identify emerging treatments where future NIHR research might be commissioned. DESIGN Systematic review. METHODS We searched MEDLINE, EMBASE, Web of Science and The Cochrane Library from 2005 to 13 July 2017 for reviews, journal articles and meeting abstracts. We looked for studies of interventions that aim to preserve or restore vision in people with dry AMD or STGD. The most important outcomes are those that matter to patients: visual acuity (VA), contrast sensitivity, reading speed, ability to drive, adverse effects of treatment, quality of life, progression of disease and patient preference. However, visual loss is a late event and intermediate predictors of future decline were accepted if there was good evidence that they are strong predictors of subsequent visual outcomes. These include changes detectable by investigation, but not necessarily noticed by people with AMD or STGD. ClinicalTrials.gov, the World Health Organization search portal and the UK Clinical Trials gateway were searched for ongoing and recently completed clinical trials. RESULTS The titles and abstracts of 7948 articles were screened for inclusion. The full text of 398 articles were obtained for further screening and checking of references and 112 articles were included in the final report. Overall, there were disappointingly few good-quality studies (including of sufficient size and duration) reporting useful outcomes, particularly in STGD. However we did identify a number of promising research topics, including drug treatments, stem cells, new forms of laser treatment, and implantable intraocular lens telescopes. In many cases, research is already under way, funded by industry or governments. LIMITATIONS In AMD, the main limitation came from the poor quality of much of the evidence. Many studies used VA as their main outcome despite not having sufficient duration to observe changes. The evidence on treatments for STGD is sparse. Most studies tested interventions with no comparison group, were far too short term, and the quality of some studies was poor. FUTURE WORK We think that the topics on which the Health Technology Assessment (HTA) and Efficacy Mechanism and Evaluation (EME) programmes might consider commissioning primary research are in STGD, a HTA trial of fenretinide (ReVision Therapeutics, San Diego, CA, USA), a visual cycle inhibitor, and EME research into the value of lutein and zeaxanthin supplements, using short-term measures of retinal function. In AMD, we suggest trials of fenretinide and of a potent statin. There is epidemiological evidence from the USA that the drug, levodopa, used for treating Parkinson's disease, may reduce the incidence of AMD. We suggest that similar research should be carried out using the large general practice databases in the UK. Ideally, future research should be at earlier stages in both diseases, before vision is impaired, using sensitive measures of macular function. This may require early detection of AMD by screening. STUDY REGISTRATION This study is registered as PROSPERO CRD42016038708. FUNDING The National Institute for Health Research HTA programme.
Collapse
Affiliation(s)
- Norman Waugh
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Pamela Royle
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Noemi Lois
- Ophthalmology, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Centre for Experimental Medicine, Queens University, Belfast, UK
| |
Collapse
|
6
|
Toms M, Burgoyne T, Tracey-White D, Richardson R, Dubis AM, Webster AR, Futter C, Moosajee M. Phagosomal and mitochondrial alterations in RPE may contribute to KCNJ13 retinopathy. Sci Rep 2019; 9:3793. [PMID: 30846767 PMCID: PMC6405871 DOI: 10.1038/s41598-019-40507-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
Mutations in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD). We examined the retina of kcnj13 mutant zebrafish (obelixtd15, c.502T > C p.[Phe168Leu]) to provide new insights into the pathophysiology underlying these conditions. Detailed phenotyping of obelixtd15 fish revealed a late onset retinal degeneration at 12 months. Electron microscopy of the obelixtd15 retinal pigment epithelium (RPE) uncovered reduced phagosome clearance and increased mitochondrial number and size prior any signs of retinal degeneration. Melanosome distribution was also affected in dark-adapted 12-month obelixtd15 fish. At 6 and 12 months, ATP levels were found to be reduced along with increased expression of glial fibrillary acidic protein and heat shock protein 60. Quantitative RT-PCR of polg2, fis1, opa1, sod1/2 and bcl2a from isolated retina showed expression changes consistent with altered mitochondrial activity and retinal stress. We propose that the retinal disease in this model is primarily a failure of phagosome physiology with a secondary mitochondrial dysfunction. Our findings suggest that alterations in the RPE and photoreceptor cellular organelles may contribute to KCNJ13-related retinal degeneration and provide a therapeutic target.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK
| | | | | | | | - Adam M Dubis
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Guo X, Zhang L, Chen J, Cao Y, Zhang Z, Li L, Han Z. Protective effects of 2-(2-benzonfuranyl)-2-imidazoline combined with tissue plasminogen activator after embolic stroke in rats. Brain Res 2018; 1699:142-149. [PMID: 30170015 DOI: 10.1016/j.brainres.2018.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and disability in developing countries. The effective therapy for acute ischemic stroke is thrombolysis with recombinant tissue plasminogen activator (rt-PA) within 4.5 h of stroke onset. An effective post-ischemic neuroprotectant would extend the advantages of rt-PA, and protect against complications of thrombolysis. We previously reported that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered ligand for high-affinity type 2 imidazoline receptor (I2R), provides neuroprotection against ischemic stroke in rats. Here we investigated the protective effects of 2-BFI in combination with delayed intravenous rt-PA after stroke induced by embolic middle cerebral artery occlusion (eMCAO) in rats. Infarct size was determined using 2,3,5-triphenyltrazolium chloride staining, while neurological deficit was assessed based on neurological score. Numbers of apoptotic cells in vivo were estimated using TUNEL stain, and expression of the pro-apoptotic protein BAX and anti-apoptotic protein BCL-2 were quantified by Western blotting. The results showed that 2-BFI (3 mg/kg) administered at 0.5 h after embolic MCAO combined with rt-PA (10 mg/kg) administered at 6 h reduced brain infarct size, mitigated neurological deficit, decreased the number of TUNEL-positive cells, down-regulated BAX expression, and up-regulated BCL-2 expression. These findings suggest that 2-BFI may extend the therapeutic window of rt-PA to 6 h after embolic stroke onset in rats.
Collapse
Affiliation(s)
- Xiaoling Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Zhang P, Zhao G, Ji L, Yin J, Lu L, Li W, Zhou G, Chaum E, Yue J. Knockdown of survivin results in inhibition of epithelial to mesenchymal transition in retinal pigment epithelial cells by attenuating the TGFβ pathway. Biochem Biophys Res Commun 2018. [PMID: 29522718 DOI: 10.1016/j.bbrc.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a common complication of open globe injury and the most common cause of failed retinal detachment surgery. The response by retinal pigment epithelial (RPE) cells liberated into the vitreous includes proliferation and migration; most importantly, epithelial to mesenchymal transition (EMT) of RPE plays a central role in the development and progress of PVR. For the first time, we show that knockdown of BIRC5, a member of the inhibitor of apoptosis protein family, using either lentiviral vector based CRISPR/Cas9 nickase gene editing or inhibition of survivin using the small-molecule inhibitor YM155, results in the suppression of EMT in RPE cells. Knockdown of survivin or inhibition of survivin significantly reduced TGFβ-induced cell proliferation and migration. We further demonstrated that knockdown or inhibition of survivin attenuated the TGFβ signaling by showing reduced phospho-SMAD2 in BIRC5 knockdown or YM155-treated cells compared to controls. Inhibition of the TGFβ pathway using TGFβ receptor inhibitor also suppressed survivin expression in RPE cells. Our studies demonstrate that survivin contributes to EMT by cross-talking with the TGFβ pathway in RPE cells. Targeting survivin using small-molecule inhibitors may provide a novel approach to treat PVR disease.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ji
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lu Lu
- Department of Genetics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China.
| | - Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Kearns VR, Tasker J, Akhtar R, Bachhuka A, Vasilev K, Sheridan CM, Williams RL. The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:124. [PMID: 28707136 PMCID: PMC5509835 DOI: 10.1007/s10856-017-5926-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells may have the potential to preserve or restore vision in patients affected by blinding diseases such as age-related macular degeneration (AMD). One of the critical steps in achieving this is the ability to grow a functioning retinal pigment epithelium, which may need a substrate on which to grow and to aid transplantation. Tailoring the physical and chemical properties of the substrate should help the engineered tissue to function in the long term. The purpose of the study was to determine whether a functioning monolayer of RPE cells could be produced on expanded polytetrafluoroethylene substrates modified by either an ammonia plasma treatment or an n-Heptylamine coating, and whether the difference in surface chemistries altered the extracellular matrix the cells produced. Primary human RPE cells were able to form a functional, cobblestone monolayer on both substrates, but the formation of an extracellular matrix to exhibit a network structure took months, whereas on non-porous substrates with the same surface chemistry, a similar appearance was observed after a few weeks. This study suggests that the surface chemistry of these materials may not be the most critical factor in the development of growth of a functional monolayer of RPE cells as long as the cells can attach and proliferate on the surface. This has important implications in the design of strategies to optimise the clinical outcomes of subretinal transplant procedures.
Collapse
Affiliation(s)
- Victoria R Kearns
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Jack Tasker
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Akash Bachhuka
- School of Engineering, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Li Z, Chen X, Zhang X, Ren X, Chen X, Cao J, Zang W, Liu X, Guo F. Small Interfering RNA Targeting Dickkopf-1 Contributes to Neuroprotection After Intracerebral Hemorrhage in Rats. J Mol Neurosci 2017; 61:279-288. [DOI: 10.1007/s12031-017-0883-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
|