1
|
Roy L, Paul S, Banerjee A, Ghosh R, Mondal S, Das M, Pan N, Das I, Singh S, Bhattacharya D, Mallick AK, Pal SK. Challenges in "probing spectroscopic probes" for noninvasive simultaneous disease diagnosis. Front Chem 2025; 12:1463273. [PMID: 39844818 PMCID: PMC11751013 DOI: 10.3389/fchem.2024.1463273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/29/2024] [Indexed: 01/24/2025] Open
Abstract
Noninvasive diagnosis of human diseases relies on the detection of molecular markers (probes) in a painless manner. Although extrinsic and intrinsic molecular markers are often used, intrinsic disease probes (molecular markers) are preferable because they are naturally present in our body, and deviation in their concentration from normal levels clearly indicates anomalies in human bodies, that is, diseases. In this study, we report noninvasive spectroscopic measurements of total haemoglobin (Hb), bilirubin, and the ratio of oxy- and deoxyhaemoglobin as disease markers for anaemia, jaundice, and oxygen deficiency, respectively, using a meticulously designed optical fibre probe. The challenges in designing the fibre probe for simultaneous noninvasive detection, including optical power, spectral density of the probing light, and resolution of the spectrometer, were found to be critical to accurate measurements. Finally, a fibre-less, highly portable, and low-cost prototype was developed and tested in human clinical trials for the diagnosis of diseases, and these results were compared with conventional techniques (blood tests).
Collapse
Affiliation(s)
- Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, India
| | - Shweta Paul
- Department of Paediatric Medicine, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Ria Ghosh
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Susmita Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Nivedita Pan
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ishitri Das
- Department of Paediatric Medicine, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Soumendra Singh
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Debasish Bhattacharya
- Department of Gynecology and Obstetrics, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Asim Kumar Mallick
- Department of Paediatric Medicine, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
2
|
Asiedu K, Krishnan AV, Kwai N, Poynten A, Markoulli M. Conjunctival microcirculation in ocular and systemic microvascular disease. Clin Exp Optom 2023; 106:694-702. [PMID: 36641840 DOI: 10.1080/08164622.2022.2151872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 01/16/2023] Open
Abstract
The conjunctival microcirculation is an accessible complex network of micro vessels whose quantitative assessment can reveal microvascular haemodynamic properties. Currently, algorithms for the measurement of conjunctival haemodynamics use either manual or semi-automated systems, which may provide insight into overall conjunctival health, as well as in ocular and systemic disease. These algorithms include functional slit-lamp biomicroscopy, laser doppler flowmetry, optical coherence tomography angiography, orthogonal polarized spectral imaging, computer-assisted intravitral microscopy, diffuse reflectance spectroscopy and corneal confocal microscopy. Furthermore, several studies have demonstrated a relationship between conjunctival microcirculatory haemodynamics and many diseases such as dry eye disease, Alzheimer's disease, diabetes, hypertension, sepsis, coronary microvascular disease, and sickle cell anaemia. This review aims to describe conjunctival microcirculation, its characteristics, and techniques for its measurement, as well as the association between conjunctival microcirculation and microvascular abnormalities in disease states.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, Australia
| | - Natalie Kwai
- School of Medical Sciences, University of sydney, Sydney, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Sarkar M, Assaad M. Noninvasive Non-Contact SpO 2 Monitoring Using an Integrated Polarization-Sensing CMOS Imaging Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:7796. [PMID: 36298147 PMCID: PMC9608125 DOI: 10.3390/s22207796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In the diagnosis and primary health care of an individual, estimation of the pulse rate and blood oxygen saturation (SpO2) is critical. The pulse rate and SpO2 are determined by methods including photoplethysmography (iPPG), light spectroscopy, and pulse oximetry. These devices need to be compact, non-contact, and noninvasive for real-time health monitoring. Reflection-based iPPG is becoming popular as it allows non-contact estimation of the heart rate and SpO2. Most iPPG methods capture temporal data and form complex computations, and thus real-time measurements and spatial visualization are difficult. METHOD In this research work, reflective mode polarized imaging-based iPPG is proposed. For polarization imaging, a custom image sensor with wire grid polarizers on each pixel is designed. Each pixel has a wire grid of varying transmission axes, allowing phase detection of the incoming light. The phase information of the backscattered light from the fingertips of 12 healthy volunteers was recorded in both the resting as well as the excited states. These data were then processed using MATLAB 2021b software. RESULTS The phase information provides quantitative information on the reflection from the superficial and deep layers of skin. The ratio of deep to superficial layer backscattered phase information is shown to be directly correlated and linearly increasing with an increase in the SpO2 and heart rate. CONCLUSIONS The phase-based measurements help to monitor the changes in the resting and excited state heart rate and SpO2 in real time. Furthermore, the use of the ratio of phase information helps to make the measurements independent of the individual skin traits and thus increases the accuracy of the measurements. The proposed iPPG works in ambient light, relaxing the instrumentation requirement and helping the system to be compact and portable.
Collapse
Affiliation(s)
- Mukul Sarkar
- Electrical Engineering Department, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Maher Assaad
- Department of Electrical and Computer Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
4
|
Beach JM, Rizvi M, Lichtenfels CB, Vince R, More SS. Topical Review: Studies of Ocular Function and Disease Using Hyperspectral Imaging. Optom Vis Sci 2022; 99:101-113. [PMID: 34897230 DOI: 10.1097/opx.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Advances in imaging technology over the last two decades have produced significant innovations in medical imaging. Hyperspectral imaging (HSI) is one of these innovations, enabling powerful new imaging tools for clinical use and greater understanding of tissue optical properties and mechanisms underlying eye disease.Hyperspectral imaging is an important and rapidly growing area in medical imaging, making possible the concurrent collection of spectroscopic and spatial information that is usually obtained from separate optical recordings. In this review, we describe several mainstream techniques used in HSI, along with noteworthy advances in optical technology that enabled modern HSI techniques. Presented also are recent applications of HSI for basic and applied eye research, which include a novel method for assessing dry eye syndrome, clinical slit-lamp examination of corneal injury, measurement of blood oxygen saturation in retinal disease, molecular changes in macular degeneration, and detection of early stages of Alzheimer disease. The review also highlights work resulting from integration of HSI with other imaging tools such as optical coherence tomography and autofluorescence microscopy and discusses the adaptation of HSI for clinical work where eye motion is present. Here, we present the background and main findings from each of these reports along with specific references for additional details.
Collapse
Affiliation(s)
- James M Beach
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Madeeha Rizvi
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Caitlin B Lichtenfels
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
5
|
Waterhouse DJ, Bano S, Januszewicz W, Stoyanov D, Fitzgerald RC, di Pietro M, Bohndiek SE. First-in-human pilot study of snapshot multispectral endoscopy for early detection of Barrett's-related neoplasia. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210159R. [PMID: 34628734 PMCID: PMC8501416 DOI: 10.1117/1.jbo.26.10.106002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/02/2021] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE The early detection of dysplasia in patients with Barrett's esophagus could improve outcomes by enabling curative intervention; however, dysplasia is often inconspicuous using conventional white-light endoscopy. AIM We sought to determine whether multispectral imaging (MSI) could be applied in endoscopy to improve detection of dysplasia in the upper gastrointestinal (GI) tract. APPROACH We used a commercial fiberscope to relay imaging data from within the upper GI tract to a snapshot MSI camera capable of collecting data from nine spectral bands. The system was deployed in a pilot clinical study of 20 patients (ClinicalTrials.gov NCT03388047) to capture 727 in vivo image cubes matched with gold-standard diagnosis from histopathology. We compared the performance of seven learning-based methods for data classification, including linear discriminant analysis, k-nearest neighbor classification, and a neural network. RESULTS Validation of our approach using a Macbeth color chart achieved an image-based classification accuracy of 96.5%. Although our patient cohort showed significant intra- and interpatient variance, we were able to resolve disease-specific contributions to the recorded MSI data. In classification, a combined principal component analysis and k-nearest-neighbor approach performed best, achieving accuracies of 95.8%, 90.7%, and 76.1%, respectively, for squamous, non-dysplastic Barrett's esophagus and neoplasia based on majority decisions per-image. CONCLUSIONS MSI shows promise for disease classification in Barrett's esophagus and merits further investigation as a tool in high-definition "chip-on-tip" endoscopes.
Collapse
Affiliation(s)
- Dale J. Waterhouse
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Sophia Bano
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Wladyslaw Januszewicz
- Medical Centre for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, Poland
| | - Dan Stoyanov
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Rebecca C. Fitzgerald
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics and CRUK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
6
|
Assessment of the conjunctival microcirculation in adult patients with cyanotic congenital heart disease compared to healthy controls. Microvasc Res 2021; 136:104167. [PMID: 33838207 DOI: 10.1016/j.mvr.2021.104167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment. It has not previously been studied in adult CHD patients with cyanosis (CCHD). METHODS We assessed the conjunctival microcirculation and compared CCHD patients and matched healthy controls to determine if there were differences in measured microcirculatory parameters. We acquired images using an iPhone 6s and slit-lamp biomicroscope. Parameters measured included diameter, axial velocity, wall shear rate and blood volume flow. The axial velocity was estimated by applying the 1D + T continuous wavelet transform (CWT). Results are for all vessels as they were not sub-classified into arterioles or venules. RESULTS 11 CCHD patients and 14 healthy controls were recruited to the study. CCHD patients were markedly more hypoxic compared to the healthy controls (84% vs 98%, p = 0.001). A total of 736 vessels (292 vs 444) were suitable for analysis. Mean microvessel diameter (D) did not significantly differ between the CCHD patients and controls (20.4 ± 2.7 μm vs 20.2 ± 2.6 μm, p = 0.86). Axial velocity (Va) was lower in the CCHD patients (0.47 ± 0.06 mm/s vs 0.53 ± 0.05 mm/s, p = 0.03). Blood volume flow (Q) was lower for CCHD patients (121 ± 30pl/s vs 145 ± 50pl/s, p = 0.65) with the greatest differences observed in vessels >22 μm diameter (216 ± 121pl/s vs 258 ± 154pl/s, p = 0.001). Wall shear rate (WSR) was significantly lower for the CCHD group (153 ± 27 s-1 vs 174 ± 22 s-1, p = 0.04). CONCLUSIONS This iPhone and slit-lamp combination assessment of conjunctival vessels found lower axial velocity, wall shear rate and in the largest vessel group, lower blood volume flow in chronically hypoxic patients with congenital heart disease. With further study this assessment method may have utility in the evaluation of patients with chronic hypoxia.
Collapse
|
7
|
Hoffman A, Atreya R, Rath T, Neurath MF. Use of Fluorescent Dyes in Endoscopy and Diagnostic Investigation. Visc Med 2020; 36:95-103. [PMID: 32355666 PMCID: PMC7184845 DOI: 10.1159/000506241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The advancement of innovative endoscopic technology in terms of improving the visualization of the mucosa has been of significant benefit. SUMMARY Advancements in image resolution, software processing, and optical filter technology have resulted in several techniques complemental to traditional white light endoscopy. These new techniques provide a real-time optical diagnosis as well as virtual histology of detected lesions. Optical molecular imaging permits a functional assessment within cells. KEY MESSAGE Optical molecular imaging provides an understanding of cellular processes and permits validation of the specificity of fluorescent tracers and the possibility of quantifying the signal.
Collapse
Affiliation(s)
- Arthur Hoffman
- Department of Internal Medicine III, Clinic Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F. Neurath
- First Department of Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
8
|
Choudhary TR, Ball D, Ramos JF, Stefansson E, Harvey AR. Remote sensing of blood oxygenation using red-eye pupil reflection. Physiol Meas 2019; 40:12NT01. [PMID: 31805541 DOI: 10.1088/1361-6579/ab5f3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To develop a technique for remote sensing of systemic blood oxygenation using red-eye pupil reflection. APPROACH The ratio of the intensities of light from the bright pupil reflections at oxygen sensitive and isosbestic wavelengths is shown to be sensitive to the oxygenation of blood in the eye. A conventional retinal camera, fitted with an image-replicating imaging spectrometer, was used at standoff range to record snapshot spectral images of the face and eyes at eight different wavelengths. In our pilot study we measured optical-density ratios (ODRs) of pupil reflections at wavelengths of 780 nm and 800 nm, simultaneous with pulse oximetry, for ten healthy human subjects under conditions of normoxia and mild hypoxia (15% oxygen). The low absorption at these infrared wavelengths localises the sensing to the choroid. We propose that this can be used for as a proxy for systemic oximetry. MAIN RESULTS A significant reduction (P < 0.001) in ODR of the pupil images was observed during hypoxia and returned to baseline on resumption of normoxia. We demonstrate that measurement of the choroidal ODR can be used to detect changes in blood oxygenation that correlate positively with pulse oximetry and with a noise-equivalent oximetry precision of 0.5%. SIGNIFICANCE We describe a new method to remotely and non-invasively sense the oxygen saturation of choroidal blood. The methodology provides a proxy for remote sensing of cerebral and systemic blood oxygenation. We demonstrate the technique at short range but it has potential for systemic oximetry at large standoff ranges.
Collapse
Affiliation(s)
- Tushar R Choudhary
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, EH25 9RG, United Kingdom. School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
9
|
Damodaran M, Amelink A, Feroldi F, Lochocki B, Davidoiu V, de Boer JF. In vivo subdiffuse scanning laser oximetry of the human retina. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-14. [PMID: 31571433 PMCID: PMC6997660 DOI: 10.1117/1.jbo.24.9.096009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Scanning laser ophthalmoscopes (SLOs) have the potential to perform high speed, high contrast, functional imaging of the human retina for diagnosis and follow-up of retinal diseases. Commercial SLOs typically use a monochromatic laser source or a superluminescent diode for imaging. Multispectral SLOs using an array of laser sources for spectral imaging have been demonstrated in research settings, with applications mainly aiming at retinal oxygenation measurements. Previous SLO-based oximetry techniques are predominantly based on wavelengths that depend on laser source availability. We describe an SLO system based on a supercontinuum (SC) source and a double-clad fiber using the single-mode core for illumination and the larger inner cladding for quasi-confocal detection to increase throughput and signal-to-noise ratio. A balanced detection scheme was implemented to suppress the relative intensity noise of the SC source. The SLO produced dual wavelength, high-quality images at 10 frames / s with a maximum 20 deg imaging field-of-view with any desired combination of wavelengths in the visible spectrum. We demonstrate SLO-based dual-wavelength oximetry in vessels down to 50 μm in diameter. Reproducibility was demonstrated by performing three different imaging sessions of the same volunteer, 8 min apart. Finally, by performing a wavelength sweep between 485 and 608 nm, we determined, for our SLO geometry, an approximately linear relationship between the effective path length of photons through the blood vessels and the vessel diameter.
Collapse
Affiliation(s)
- Mathi Damodaran
- Vrije Universiteit Amsterdam, LaserLaB, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Arjen Amelink
- Netherlands Organization for Applied Scientific Research TNO, Department of Optics, Delft, The Netherlands
| | - Fabio Feroldi
- Vrije Universiteit Amsterdam, LaserLaB, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Benjamin Lochocki
- Vrije Universiteit Amsterdam, LaserLaB, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Valentina Davidoiu
- Vrije Universiteit Amsterdam, LaserLaB, Department of Physics and Astronomy, Amsterdam, The Netherlands
| | - Johannes F. de Boer
- Vrije Universiteit Amsterdam, LaserLaB, Department of Physics and Astronomy, Amsterdam, The Netherlands
- Amsterdam UMC, Ophthalmology Department, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang J, Hu L, Shi C, Jiang H. Inter-visit measurement variability of conjunctival vasculature and circulation in habitual contact lens wearers and non-lens wearers. EYE AND VISION 2019; 6:10. [PMID: 30984795 PMCID: PMC6442401 DOI: 10.1186/s40662-019-0135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
Abstract
Background The inter-visit variation of measuring bulbar conjunctival microvasculature and microcirculation needs to be considered when the results from multiple visits are interpreted. This study examined the inter-visit variability of measuring conjunctival microvasculature and microcirculation in habitual contact lens (HCL) wearers and non-contact lens (NCL) wearers. Methods Twenty-eight subjects were recruited including 13 HCL wearers (10 females and 3 males; mean age ± standard deviation, 25.8 ± 4.6 years) who had worn contact lenses on a daily basis for at least 3 years and 15 NCL wearers (10 females and 5 males, age 25.5 ± 4.0 years) were recruited. The temporal bulbar conjunctiva was imaged using a functional slit-lamp bio-microscope (FSLB) imaging system. FSLB imaging was performed in the morning when the HCL wearers did not wear their lenses. The measurements included conjunctival vessel diameter, vessel density, blood flow velocity and flow volume. In addition, conjunctival microvasculature was analyzed using monofractal (Dbox, representing vessel density) and multifractal (D0 representing vessel complexity) analyses. The repeated measurement was conducted at least one week after the first visit and both eyes of each participant were imaged. The coefficient of variation (CV) was calculated as the standard deviation of the differences between test and re-test then divided by the mean of the measurements. The intra-class correlation coefficient (ICC) was also calculated. Results No significant differences of all vascular measurements in both the right and left eyes were found between two groups (P > 0.05). Between two measurements on two different visits, the CV was from 2.4% (vessel density D0) to 63.5% (blood flow volume Q) in HCL wearers and from 3.4% (D0) to 40.6% (blood flow volume) in NCL wearers. The ICC was from 0.60 (vessel diameter) to 0.81 (axial blood flow velocity VA) in HCL wearers and from 0.44 (Q) to 0.68 (cross-sectional blood flow velocity VS) in NCL wearers. Conclusions The measurement variability of the vessel density of the bulbar conjunctiva appeared to have the smallest inter-visit variation. The measurement variability of the vasculature and circulation in HCL wearers were similar to that in NCL wearers.
Collapse
Affiliation(s)
- Jianhua Wang
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Liang Hu
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA.,2School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ce Shi
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA.,2School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Jiang
- 1Miller School of Medicine, Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| |
Collapse
|
11
|
Waterhouse DJ, Luthman AS, Yoon J, Gordon GSD, Bohndiek SE. Quantitative evaluation of comb-structure correction methods for multispectral fibrescopic imaging. Sci Rep 2018; 8:17801. [PMID: 30542081 PMCID: PMC6290790 DOI: 10.1038/s41598-018-36088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Removing the comb artifact introduced by imaging fibre bundles, or 'fibrescopes', for example in medical endoscopy, is essential to provide high quality images to the observer. Multispectral imaging (MSI) is an emerging method that combines morphological (spatial) and chemical (spectral) information in a single data 'cube'. When a fibrescope is coupled to a spectrally resolved detector array (SRDA) to perform MSI, comb removal is complicated by the demosaicking step required to reconstruct the multispectral data cube. To understand the potential for using SRDAs as multispectral imaging sensors in medical endoscopy, we assessed five comb correction methods with respect to five performance metrics relevant to biomedical imaging applications: processing time, resolution, smoothness, signal and the accuracy of spectral reconstruction. By assigning weights to each metric, which are determined by the particular imaging application, our results can be used to select the correction method to achieve best overall performance. In most cases, interpolation gave the best compromise between the different performance metrics when imaging using an SRDA.
Collapse
Affiliation(s)
- Dale J Waterhouse
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - A Siri Luthman
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Jonghee Yoon
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - George S D Gordon
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
12
|
Luthman AS, Waterhouse DJ, Ansel-Bollepalli L, Yoon J, Gordon GSD, Joseph J, di Pietro M, Januszewicz W, Bohndiek SE. Bimodal reflectance and fluorescence multispectral endoscopy based on spectrally resolving detector arrays. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-14. [PMID: 30358334 PMCID: PMC6975231 DOI: 10.1117/1.jbo.24.3.031009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 05/08/2023]
Abstract
Emerging clinical interest in combining standard white light endoscopy with targeted near-infrared (NIR) fluorescent contrast agents for improved early cancer detection has created demand for multimodal imaging endoscopes. We used two spectrally resolving detector arrays (SRDAs) to realize a bimodal endoscope capable of simultaneous reflectance-based imaging in the visible spectral region and multiplexed fluorescence-based imaging in the NIR. The visible SRDA was composed of 16 spectral bands, with peak wavelengths in the range of 463 to 648 nm and full-width at half-maximum (FWHM) between 9 and 26 nm. The NIR SRDA was composed of 25 spectral bands, with peak wavelengths in the range 659 to 891 nm and FWHM 7 to 15 nm. The spectral endoscope design was based on a "babyscope" model using a commercially available imaging fiber bundle. We developed a spectral transmission model to select optical components and provide reference endmembers for linear spectral unmixing of the recorded image data. The technical characterization of the spectral endoscope is presented, including evaluation of the angular field-of-view, barrel distortion, spatial resolution and spectral fidelity, which showed encouraging performance. An agarose phantom containing oxygenated and deoxygenated blood with three fluorescent dyes was then imaged. After spectral unmixing, the different chemical components of the phantom could be successfully identified via majority decision with high signal-to-background ratio (>3). Imaging performance was further assessed in an ex vivo porcine esophagus model. Our preliminary imaging results demonstrate the capability to simultaneously resolve multiple biological components using a compact spectral endoscopy system.
Collapse
Affiliation(s)
- A. Siri Luthman
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Dale J. Waterhouse
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Laura Ansel-Bollepalli
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Jonghee Yoon
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - George S. D. Gordon
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Department of Engineering, Cambridge, United Kingdom
| | - James Joseph
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| | - Massimiliano di Pietro
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Wladyslaw Januszewicz
- University of Cambridge, MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Center, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
13
|
Hashimoto R, Kurata T, Sekine M, Nakano K, Ohnishi T, Haneishi H. Two-wavelength oximetry of tissue microcirculation based on sidestream dark-field imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-8. [PMID: 30378349 PMCID: PMC6975279 DOI: 10.1117/1.jbo.24.3.031013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 05/24/2023]
Abstract
Monitoring oxygen saturation (SO2) in microcirculation is effective for understanding disease dynamics. We have developed an SO2 estimation method, sidestream dark-field (SDF) oximetry, based on SDF imaging. SDF imaging is a noninvasive and clinically applicable technique to observe microcirculation. We report the first in vivo experiment observing the changes in SO2 of microcirculation using SDF oximetry. First, heat from the light-emitting diodes used for the SDF imaging might affect hemodynamics in microcirculation, hence, we performed an experiment to evaluate the influence of that on the SDF oximetry. The result suggested that SDF oximetry had enough stability for long-term experiments. Then, to evaluate the sensitivity of SDF oximetry to alterations in the hemodynamics of the microcirculation, we observed the time-lapsed SO2 changes in the dermis microcirculation of rats under hypoxic stimulation. We confirmed that the SO2 estimated by SDF oximetry was in accordance with changes in the fraction of inspired oxygen (FiO2). Thus, SDF oximetry is considered to be able to observe SO2 changes that occur in accordance with alteration of the microcirculation.
Collapse
Affiliation(s)
- Ryohei Hashimoto
- Chiba University, Graduate School of Science and Engineering, Chiba, Japan
| | | | - Masashi Sekine
- Chiba University, Center for Frontier Medical Engineering, Chiba, Japan
| | - Kazuya Nakano
- Chiba University, Center for Frontier Medical Engineering, Chiba, Japan
| | - Takashi Ohnishi
- Chiba University, Center for Frontier Medical Engineering, Chiba, Japan
| | - Hideaki Haneishi
- Chiba University, Center for Frontier Medical Engineering, Chiba, Japan
| |
Collapse
|
14
|
Menaa F, Khan BA, Uzair B, Menaa A. Sickle cell retinopathy: improving care with a multidisciplinary approach. J Multidiscip Healthc 2017; 10:335-346. [PMID: 28919773 PMCID: PMC5587171 DOI: 10.2147/jmdh.s90630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sickle cell retinopathy (SCR) is the most representative ophthalmologic complication of sickle cell disease (SCD), a hemoglobinopathy affecting both adults and children. SCR presents a wide spectrum of manifestations and may even lead to irreversible vision loss if not properly diagnosed and treated at the earliest. Over the past decade, multidisciplinary research developments have focused upon systemic, genetic, and ocular risk factors of SCR, enabling the clinician to better diagnose and manage these patients. In addition, newer imaging and testing modalities, such as spectral domain-optical coherence tomography angiography, have resulted in the detection of subclinical retinopathy related to SCD. Innovative therapy includes intravitreal injection of an anti-vascular endothelial growth factor (eg, Lucentis® [ranibizumab] or Eylea® [aflibercept]) which appears comparatively safe and efficient, and may be combined with laser photocoagulation (LPC) for proliferative SCR. The effect of LPC alone does not significantly lead to the regression of advanced SCR, although it helps in avoiding hemorrhage and sight loss. This comprehensive article is based on 10-years retrospective (2007–2017) studies. It aims to present advances and recommendations in SCR theranostics while pointing out the requirement of combinatorial approaches for better management of SCR patients. To reach this goal, we identified and analyzed randomized original and review articles, clinical trials, non-randomized intervention studies, and observational studies using specified keywords in various databases (eg, Medline, Embase, Cochrane, ClinicalTrials.gov).
Collapse
Affiliation(s)
- Farid Menaa
- Department of Pharmaceutical Sciences and Nanomedicine, California Innovations Corporation, San Diego, CA, USA.,Departments of Clinical Medicine and Laser Therapy, Centre Médical des Guittières, Saint-Philbert-de-Grand-Lieu, Loire-Atlantique, France
| | - Barkat Ali Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur
| | - Bushra Uzair
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Abder Menaa
- Departments of Clinical Medicine and Laser Therapy, Centre Médical des Guittières, Saint-Philbert-de-Grand-Lieu, Loire-Atlantique, France
| |
Collapse
|
15
|
van der Putten MA, Brewer JM, Harvey AR. Multispectral oximetry of murine tendon microvasculature with inflammation. BIOMEDICAL OPTICS EXPRESS 2017; 8:2896-2905. [PMID: 28663914 PMCID: PMC5480437 DOI: 10.1364/boe.8.002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
We report a novel multispectral imaging technique for localised measurement of vascular oxygen saturation (SO2) in vivo. Annular back-illumination is generated using a Schwarzchild-design reflective objective. Analysis of multispectral data is performed using a calibration-free oximetry algorithm. This technique is applied to oximetry in mice to measure SO2 in microvasculature supplying inflamed tendon tissue in the hind leg. Average SO2 for controls was 94.8 ± 7.0 % (N = 6), and 84.0 ± 13.5 % for mice with inflamed tendon tissue (N = 6). We believe this to be the first localised measurement of hypoxia in tendon microvasculature due to inflammation. Quantification of localised SO2 is important for the study of inflammatory diseases such as rheumatoid arthritis, where hypoxia is thought to play a role in pathogenesis.
Collapse
Affiliation(s)
| | - James M. Brewer
- Institute for Infection, Immunity & Inflammation, University of Glasgow, G12 8QQ,
UK
| | - Andrew R. Harvey
- School of Physics & Astronomy, University of Glasgow, G12 8QQ,
UK
| |
Collapse
|
16
|
Sarkar PK, Pal S, Polley N, Aich R, Adhikari A, Halder A, Chakrabarti S, Chakrabarti P, Pal SK. Development and validation of a noncontact spectroscopic device for hemoglobin estimation at point-of-care. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:55006. [PMID: 28510622 DOI: 10.1117/1.jbo.22.5.055006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Anemia severely and adversely affects human health and socioeconomic development. Measuring hemoglobin with the minimal involvement of human and financial resources has always been challenging. We describe a translational spectroscopic technique for noncontact hemoglobin measurement at low-resource point-of-care settings in human subjects, independent of their skin color, age, and sex, by measuring the optical spectrum of the blood flowing in the vascular bed of the bulbar conjunctiva. We developed software on the LabVIEW platform for automatic data acquisition and interpretation by nonexperts. The device is calibrated by comparing the differential absorbance of light of wavelength 576 and 600 nm with the clinical hemoglobin level of the subject. Our proposed method is consistent with the results obtained using the current gold standard, the automated hematology analyzer. The proposed noncontact optical device for hemoglobin estimation is highly efficient, inexpensive, feasible, and extremely useful in low-resource point-of-care settings. The device output correlates with the different degrees of anemia with absolute and trending accuracy similar to those of widely used invasive methods. Moreover, the device can instantaneously transmit the generated report to a medical expert through e-mail, text messaging, or mobile apps.
Collapse
Affiliation(s)
- Probir Kumar Sarkar
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological, and Macromolecular Sciences, Salt Lake, Kolkata, India
| | - Sanchari Pal
- Nil Ratan Sircar Medical College and Hospital, Department of Clinical Haematology, Sealdah, Kolkata, West Bengal, India
| | - Nabarun Polley
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological, and Macromolecular Sciences, Salt Lake, Kolkata, India
| | - Rajarshi Aich
- Medical College and Hospital, Department of Cardiology, Central Avenue, Kolkata, West Bengal, India
| | - Aniruddha Adhikari
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological, and Macromolecular Sciences, Salt Lake, Kolkata, India
| | - Animesh Halder
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological, and Macromolecular Sciences, Salt Lake, Kolkata, India
| | - Subhananda Chakrabarti
- Indian Institute of Technology Bombay, Department of Electrical Engineering, Powai, Mumbai, Maharashtra, India
| | - Prantar Chakrabarti
- Nil Ratan Sircar Medical College and Hospital, Department of Clinical Haematology, Sealdah, Kolkata, West Bengal, India
| | - Samir Kumar Pal
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological, and Macromolecular Sciences, Salt Lake, Kolkata, India
| |
Collapse
|
17
|
Affiliation(s)
- Lewis. E. MacKenzie
- School of Biomedical Sciences, University of Leeds, Garstang Building Leeds, Leeds, UK
| | - Andy. R. Harvey
- School of Physics and Astronomy, Kelvin Building University of Glasgow University Avenue, Glasgow, UK
| | | |
Collapse
|
18
|
van der Putten MA, MacKenzie LE, Davies AL, Fernandez-Ramos J, Desai RA, Smith KJ, Harvey AR. A multispectral microscope for in vivo oximetry of rat dorsal spinal cord vasculature. Physiol Meas 2016; 38:205-218. [PMID: 28001129 DOI: 10.1088/1361-6579/aa5527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quantification of blood oxygen saturation (SO2) in vivo is essential for understanding the pathogenesis of diseases in which hypoxia is thought to play a role, including inflammatory disorders such as multiple sclerosis (MS) and rheumatoid arthritis (RA). We describe a low-cost multispectral microscope and oximetry technique for calibration-free absolute oximetry of surgically exposed blood vessels in vivo. We imaged the vasculature of the dorsal spinal cord in healthy rats, and varied inspired oxygen (FiO2) in order to evaluate the sensitivity of the imaging system to changes in SO2. The venous SO2 was calculated as 67.8 ± 10.4% (average ± standard deviation), increasing to 83.1 ± 11.6% under hyperoxic conditions (100% FiO2) and returning to 67.4 ± 10.9% for a second normoxic period; the venous SO2 was 50.9 ± 15.5% and 29.2 ± 24.6% during subsequent hypoxic states (18% and 15% FiO2 respectively). We discuss the design and performance of our multispectral imaging system, and the future scope for extending this oximetry technique to quantification of hypoxia in inflamed tissue.
Collapse
|