1
|
Xu J, Li R, Xu H, Yang Y, Zhang S, Ren T. Recent progress of continuous intraocular pressure monitoring. NANO SELECT 2021. [DOI: 10.1002/nano.202100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jiandong Xu
- Institute of Microelectronics Tsinghua University Beijing 100084 China
- Beijing National Research Center for Information Science and Technology (BNRist) Tsinghua University Beijing 100084 China
| | - Ruisong Li
- Department of Electrical Engineering and Computer Science and Department of Bioengineering College of Engineering University of California Berkeley California 94720 USA
| | - Haokai Xu
- Institute of Microelectronics Tsinghua University Beijing 100084 China
- Beijing National Research Center for Information Science and Technology (BNRist) Tsinghua University Beijing 100084 China
| | - Yi Yang
- Institute of Microelectronics Tsinghua University Beijing 100084 China
- Beijing National Research Center for Information Science and Technology (BNRist) Tsinghua University Beijing 100084 China
| | - Sheng Zhang
- Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Tian‐Ling Ren
- Institute of Microelectronics Tsinghua University Beijing 100084 China
- Beijing National Research Center for Information Science and Technology (BNRist) Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
2
|
Yao J, Qiang W, Wei H, Xu Y, Wang B, Zheng Y, Wang X, Miao Z, Wang L, Wang S, Yang X. Ultrathin and Robust Micro-Nano Composite Coating for Implantable Pressure Sensor Encapsulation. ACS OMEGA 2020; 5:23129-23139. [PMID: 32954163 PMCID: PMC7495720 DOI: 10.1021/acsomega.0c02897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Implantable pressure sensors enable more accurate disease diagnosis and real-time monitoring. Their widescale usage is dependent on a reliable encapsulation to protect them from corrosion of body fluids, yet not increasing their sizes or impairing their sensing functions during their lifespans. To realize the above requirements, an ultrathin, flexible, waterproof while robust micro-nano composite coating for encapsulation of an implantable pressure sensor is designed. The composite coating is composed of a nanolayer of silane-coupled molecules and a microlayer of parylene polymers. The mechanism and principle of the composite encapsulation coating with high adhesion are elucidated. Experimental results show that the error of the sensors after encapsulation is less than 2 mmHg, after working continuously for equivalently over 434 days in a simulated body fluid environment. The effects of the coating thickness on the waterproof time and the error of the sensor are also studied. The encapsulated sensor is implanted in an isolated porcine eye and a living rabbit eye, exhibiting excellent performances. Therefore, the micro-nano composite encapsulation coating would have an appealing application in micro-nano-device protections, especially for implantable biomedical devices.
Collapse
Affiliation(s)
- Jialin Yao
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Wenjiang Qiang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Hao Wei
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Yan Xu
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Bo Wang
- School
of Mechanical and Electrical Engineering, Yantai University, Yantai 264005, People’s Republic
of China
| | - Yushuang Zheng
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Xizi Wang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Zequn Miao
- Center
of Optometry, Department of Ophthalmology, Peking University People’s Hospital, Beijing 100044, People’s Republic of China
- Beijing
Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, People’s Republic of China
| | - Lejin Wang
- Center
of Optometry, Department of Ophthalmology, Peking University People’s Hospital, Beijing 100044, People’s Republic of China
- Beijing
Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, People’s Republic of China
| | - Song Wang
- The
State Key Laboratory of Precision Measurement Technology and Instruments,
Department of Precision Instrument, Tsinghua
University, Beijing 100084, People’s Republic
of China
| | - Xing Yang
- The
State Key Laboratory of Precision Measurement Technology and Instruments,
Department of Precision Instrument, Tsinghua
University, Beijing 100084, People’s Republic
of China
| |
Collapse
|
3
|
Hui PC, Shtyrkova K, Zhou C, Chen X, Chodosh J, Dohlman CH, Paschalis EI. Implantable self-aligning fiber-optic optomechanical devices for in vivo intraocular pressure-sensing in artificial cornea. JOURNAL OF BIOPHOTONICS 2020; 13:e202000031. [PMID: 32246524 DOI: 10.1002/jbio.202000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Artificial cornea is an effective treatment of corneal blindness. Yet, intraocular pressure (IOP) measurements for glaucoma monitoring remain an urgent unmet need. Here, we present the integration of a fiber-optic Fabry-Perot pressure sensor with an FDA-approved keratoprosthesis for real-time IOP measurements using a novel strategy based on optical-path self-alignment with micromagnets. Additionally, an alternative noncontact sensor-interrogation approach is demonstrated using a bench-top optical coherence tomography system. We show stable pressure readings with low baseline drift (<2.8 mm Hg) for >4.5 years in vitro and efficacy in IOP interrogation in vivo using fiber-optic self-alignment, with good initial agreement with the actual IOP. Subsequently, IOP drift in vivo was due to retroprosthetic membrane (RPM) formation on the sensor secondary to surgical inflammation (more severe in the current pro-fibrotic rabbit model). This study paves the way for clinical adaptation of optical pressure sensors with ocular implants, highlighting the importance of controlling RPM in clinical adaptation.
Collapse
Affiliation(s)
- Pui-Chuen Hui
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Katia Shtyrkova
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Chengxin Zhou
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaoniao Chen
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - James Chodosh
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Claes H Dohlman
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Eleftherios I Paschalis
- Boston Keratoprosthesis Laboratory, Massachusetts Eye and Ear, Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Chang Y, Zuo J, Zhang H, Duan X. State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Abstract
This review describes some of the most recent advances in the development and application of new technologies for detecting and managing glaucoma, including imaging, visual function testing, and tonometry. The widespread availability of mobile technology in the developing world is improving health care delivery, for example, with smartphones and mobile applications that allow patient data to be assessed remotely by health care providers.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Una
- Glaucoma Department, Instituto Oftalmologico Fernandez-Vega, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|