1
|
Wang Z, Zhang P, Huang C, Guo Y, Dong X, Li X. Conjunctival sac bacterial culture of patients using levofloxacin eye drops before cataract surgery: a real-world, retrospective study. BMC Ophthalmol 2022; 22:328. [PMID: 35907940 PMCID: PMC9338605 DOI: 10.1186/s12886-022-02544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Background The use of antibiotics preoperatively is effective to decrease the incidence of ocular bacterial infections but may lead to high resistance rate, especially on patients with multi-risk clinical factors. This study systematically analyzed real-world data (RWD) of patients to reveal the association between clinical factors and conjunctival sac bacterial load and offer prophylaxis suggestions. Methods We retrieved RWD of patients using levofloxacin eye drops (5 mL: 24.4 mg, 4 times a day for 3 days) preoperatively. Retrieved data included information on the conjunctival sac bacterial culture, sex, presence of hypertension and diabetes mellitus (DM), and history of hospital-based surgeries. Data was analyzed using SPSS 24.0. Results RWD of 15,415 cases (patients) were retrieved. Among these patients, 5,866 (38.1%) were males and 9,549 (61.9%) females. 5,960 (38.7%) patients had a history of hypertension, and 3,493 (22.7%) patients had a history of DM. 7,555 (49.0%) patients had a history of hospital-based operations. There were 274 (1.8%) positive bacterial cultures. Male patients with hypertension and DM may be at increased risk of having positive bacterial cultures (P < 0.05). Staphylococcus epidermidis (n = 56, 20.4%), Kocuria rosea (n = 37, 13.5%), and Micrococcus luteus (n = 32, 11.7%) were the top 3 isolated strains. Most bacterial strains were resistant to various antibiotics except rifampin, and 82.5% (33 of 40 isolates) of Staphylococcus epidermidis isolates had multidrug antibiotic resistance. Numbers of culture-positive Staphylococcus epidermidis isolates in the male group and non-DM group were greater than those in the female and DM groups, respectively. Micrococcus luteus (n = 11, 8.8%) was found less frequently in non-hypertension group than in hypertension group. Conclusion Sex (Male) and the presence of hypertension and DM are risk factors for greater conjunctival sac bacterial loads. We offer a prophylactic suggestion based on the combined use of levofloxacin and rifampin. However, this approach may aggravate risk of multidrug resistance.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.,Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Yining Guo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuhe Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China. .,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Liu Q, Xu ZY, Wang XL, Huang XM, Zheng WL, Li MJ, Xiao F, Ouyang PW, Yang XH, Cui YH, Pan HW. Changes in Conjunctival Microbiota Associated With HIV Infection and Antiretroviral Therapy. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34473190 PMCID: PMC8419876 DOI: 10.1167/iovs.62.12.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose HIV infection is associated with a variety of ocular surface diseases. Understanding the difference of the ocular microbiota between HIV-infected and healthy individuals as well as the influence of antiretroviral therapy will help to investigate the pathogenesis of these conditions. Methods A cross-sectional study was conducted on subjects including HIV-negative individuals, untreated HIV-infected individuals, and HIV-infected individuals with antiretroviral therapy. Conjunctival microbiota was assessed by bacterial 16S rRNA sequencing of the samples obtained from the conjunctival swab. Results The microbial richness in ocular surface was similar in HIV-negative, untreated HIV-positive, and highly active antiretroviral therapy (HAART) subjects. The bacterial compositions were similar in the two HIV infection groups but were significantly different from the HIV-negative group. HAART changed the beta diversity of bacterial community as determined by Shannon index. CD4+ T cell count had no significant influence on the diversity of ocular microbiota in HIV-infected individuals. Conclusions The data revealed the compositional and structural difference in conjunctival microbial community in subjects with and without HIV infection, indicating that HIV infection or its treatment, may contribute to ocular surface dysbiosis.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan, China
| | - Xiao-Li Wang
- Department of Ophthalmology, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiao-Mei Huang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Fan Xiao
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Aragona P, Baudouin C, Benitez Del Castillo JM, Messmer E, Barabino S, Merayo-Lloves J, Brignole-Baudouin F, Inferrera L, Rolando M, Mencucci R, Rescigno M, Bonini S, Labetoulle M. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv Ophthalmol 2021; 66:907-925. [PMID: 33819460 DOI: 10.1016/j.survophthal.2021.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
The ocular surface flora perform an important role in the defense mechanisms of the ocular surface system. Its regulation of the immunological activity and the barrier effect against pathogen invasion are remarkable. Composition of the flora differs according to the methods of investigation, because the microbiome, composed of the genetic material of bacteria, fungi, viruses, protozoa, and eukaryotes on the ocular surface, differs from the microbiota, which are the community of microorganisms that colonize the ocular surface. The observed composition of the ocular surface flora depends on harvesting and examining methods, whether with traditional culture or with more refined genetic analysis based on rRNA and DNA sequencing. Environment, diet, sex, and age influence the microbial flora composition, thus complicating the analysis of the baseline status. Moreover, potentially pathogenic organisms can affect its composition, as do various disorders, including chronic inflammation, and therapies applied to the ocular surface. A better understanding of the composition and function of microbial communities at the ocular surface could bring new insights and clarify the epidemiology and pathology of ocular surface dynamics in health and disease. The purpose of this review is to provide an up-to-date overview of knowledge about this topic.
Collapse
Affiliation(s)
- Pasquale Aragona
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy.
| | - Christophe Baudouin
- Quinze-Vingts National Eye Hospital, IHU ForeSight, Paris Saclay University, Paris, France
| | - Jose M Benitez Del Castillo
- Departamento de Oftalmología, Hospital Clínico San Carlos, Clínica Rementeria, Instituto Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense, Madrid, Spain
| | - Elisabeth Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefano Barabino
- Ocular Surface and Dry Eye Center, Ospedale L. Sacco, University of Milan, Milan, Italy
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Oviedo, Spain
| | - Francoise Brignole-Baudouin
- Sorbonne Université, INSERM UMR_S968, CNRS UMR7210, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Laboratoire de Biologie Médicale, Paris, France; Université de Paris, Faculté de Pharmacie de Paris, Département de Chimie-Toxicologie Analytique et Cellulaire, Paris, France
| | - Leandro Inferrera
- Department of Biomedical Sciences, Ophthalmology Clinic, University of Messina, Messina, Italy
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | - Rita Mencucci
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Eye Clinic, University of Florence, Florence, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Humanitas University Department of Biomedical Sciences, Milan, Italy
| | - Stefano Bonini
- Department of Ophthalmology, University of Rome Campus Biomedico, Rome, Italy
| | - Marc Labetoulle
- Ophthalmology Départment, Hôpitaux Universitaires Paris-Sud, APHP, Université Paris-Saclay, IDMIT Infrastructure, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
4
|
Kang Y, Lin S, Ma X, Che Y, Chen Y, Wan T, Zhang D, Shao J, Xu J, Xu Y, Lou Y, Zheng M. Strain heterogeneity, cooccurrence network, taxonomic composition and functional profile of the healthy ocular surface microbiome. EYE AND VISION 2021; 8:6. [PMID: 33622400 PMCID: PMC7903678 DOI: 10.1186/s40662-021-00228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is growing evidence indicating that the microbial communities that dwell on the human ocular surface are crucially important for ocular surface health and disease. Little is known about interspecies interactions, functional profiles, and strain heterogeneity across individuals in healthy ocular surface microbiomes. METHODS To comprehensively characterize the strain heterogeneity, cooccurrence network, taxonomic composition and functional profile of the healthy ocular surface microbiome, we performed shotgun metagenomics sequencing on ocular surface mucosal membrane swabs of 17 healthy volunteers. RESULTS The healthy ocular surface microbiome was classified into 12 phyla, 70 genera, and 140 species. The number of species in each healthy ocular surface microbiome ranged from 6 to 47, indicating differences in microbial diversity among individuals. The species with high relative abundances and high positivity rates were Streptococcus pyogenes, Staphylococcus epidermidis, Propionibacterium acnes, Corynebacterium accolens, and Enhydrobacter aerosaccus. A correlation network analysis revealed a competitive interaction of Staphylococcus epidermidis with Streptococcus pyogenes in ocular surface microbial ecosystems. Staphylococcus epidermidis and Streptococcus pyogenes revealed phylogenetic diversity among different individuals. At the functional level, the pathways related to transcription were the most abundant. We also found that there were abundant lipid and amino acid metabolism pathways in the healthy ocular surface microbiome. CONCLUSION This study explored the strain heterogeneity, cooccurrence network, taxonomic composition, and functional profile of the healthy ocular surface microbiome. These findings have important significance for the future development of probiotic-based eye therapeutic drugs.
Collapse
Affiliation(s)
- Yutong Kang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shudan Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yanlin Che
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiju Chen
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tian Wan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Die Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiao Shao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Jie Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yi Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China. .,Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Wang Z, Huang C, Li X. Research Trends and Hotspot Analysis of Conjunctival Bacteria Based on CiteSpace Software. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2580795. [PMID: 33083458 PMCID: PMC7556104 DOI: 10.1155/2020/2580795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To sort out the literature related to conjunctival bacteria and summarize research hotspots and trends of this field. MATERIALS AND METHODS The relevant literature data from 1900 to 2019 was retrieved from the Web of Science Core Collection database. After manual selection, each document record includes title, author, keywords, abstract, year, organization, and citation. We imported the downloaded data into CiteSpace V (version 5.5R2) to draw the knowledge map and conduct cooperative network analysis, discipline and journal analysis, cluster analysis, and burst keyword analysis. RESULTS After manual screening, there were 285 relevant papers published in the last 28 years (from 1991 to 2019), and the number is increasing year by year. The publications of conjunctival bacteria were dedicated by 1381 authors of 451 institutions in 56 countries/regions. The United States dominates this field (82 literatures), followed by Germany (23 literatures) and Japan (23 literatures). Overall, most cited papers were published with a focus on molecular biology, genetics, nursing, and toxicology. Most papers fall into the category of ophthalmology, veterinary sciences, and pharmacology and pharmacy. The only organized cluster is the "postantibiotic effect," and the top 5 keywords with the strongest citation bursts include "postoperative endophthalmiti(s)," "infectious keratoconjunctiviti(s)," "conjunctiviti(s)," "resistance," and "diversity". CONCLUSION The global field of conjunctival bacteria has expanded in the last 28 years. The United States contributes most. However, there are little cooperation among authors and institutions. Overall, this bibliometric study organized one cluster, "postantibiotic effect", and identified the top 5 hotspots in conjunctival bacteria research: "postoperative endophthalmiti(s)," "infectious keratoconjunctiviti(s)," "conjunctiviti(s)," "resistance," and "diversity". Thus, further research focuses on these topics that may be more helpful to prevent ocular infection and improve prophylaxis strategies to bring a benefit to patients in the near future.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chen Huang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Deepthi KG, Prabagaran SR. Ocular bacterial infections: Pathogenesis and diagnosis. Microb Pathog 2020; 145:104206. [PMID: 32330515 DOI: 10.1016/j.micpath.2020.104206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The human eye is a rigid asymmetric structure with unique defence system. Despite considerable resident microbiota, eye is exposed to external environment where a range of microorganisms also inhabits. Opportunistically, some of these microorganisms could associate with eye pathogen that could contact incidentally, leading to destructive visual consequences. Among such microbiota, bacteria form the major proportion concerning ocular complications worldwide. The succession of genome based approach through 16S rRNA gene based identification tremendously augmented the knowledge on diversity of ocular surface bacteria. Such evidence suggests that while few bacteria contribute towards normal ocular functions, considerable number of bacteria play active role in pathophysiology of ocular diseases. Thus, understanding the complexity of ocular microflora not only throw light on their critical role towards normal function of the eye, but also enlighten on certain visual exigencies. Under these circumstances, development of a rapid, reliable and cost effective method is essential that eventually evolve as a routine diagnostic protocol. Such precise prognostic modalities facilitate ophthalmologists to formulate pioneering therapeutics towards challenging ocular diseases.
Collapse
|
7
|
Dong X, Wang Y, Wang W, Lin P, Huang Y. Composition and Diversity of Bacterial Community on the Ocular Surface of Patients With Meibomian Gland Dysfunction. Invest Ophthalmol Vis Sci 2020; 60:4774-4783. [PMID: 31738825 DOI: 10.1167/iovs.19-27719] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the composition and diversity of bacterial community on the ocular surface of patients with meibomian gland dysfunction (MGD) via 16S rDNA sequencing. Methods Forty-seven patients with MGD, who were divided into groups of mild, moderate, and severe MGD, and 42 sex- and age-matched participants without MGD (control group) were enrolled. Samples were collected from the upper and lower conjunctival sac of one randomly chosen eye of each participant. Through sequencing the hypervariable region of 16S rDNA gene obtained from samples, differences in the taxonomy and diversity between groups were compared. Results Principle coordinate analysis showed significantly distinct clustering of the conjunctival sac bacterial community between the severe MGD group and the other groups. At the phylum level, the relative abundances of Firmicutes (31.70% vs. 19.67%) and Proteobacteria (27.46% vs. 14.66%) were significantly higher (P < 0.05, Mann-Whitney U), and the abundance of Actinobacteria (34.17% vs. 56.98%) was lower in MGD than controls (P < 0.05, Mann-Whitney U). At the genus level, the abundances of Staphylococcus (20.71% vs. 7.88%) and Sphingomonas (5.73% vs. 0.79%) in patients with MGD were significantly higher than the controls (P < 0.05, Mann-Whitney U), while the abundance of Corynebacterium (20.22% vs. 46.43%) was significantly lower (P < 0.05, Mann-Whitney U). The abundance of Staphylococcus was positively correlated with the meiboscores in patients with MGD (r = 0.650, P < 0.001, Spearman). Conclusions Patients with MGD can have various degrees of bacterial microbiota imbalance in the conjunctival sac. Staphylococcus, Corynebacterium, and Sphingomonas may play roles in the pathophysiology of MGD.
Collapse
Affiliation(s)
- Xiaojin Dong
- Medical College of Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yuqian Wang
- Medical College of Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weina Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ping Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yusen Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
8
|
Zeng W, Zhang Y, Duan F, Lin T, Liu X, Li D, Wu K. Lipopolysaccharide enhances human herpesvirus 1 replication and IL-6 release in epithelial cells. Microb Pathog 2020; 140:103961. [PMID: 31904451 DOI: 10.1016/j.micpath.2019.103961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the effect of lipopolysaccharide (LPS) on human herpesvirus 1 (HHV-1) infection in epithelial cells. METHODS Two strains of HHV-1, HHV-1 F strain (HHV-1f) and HHV-1 strain-H129 with GFP knock-in (HHV-g4), were used to infect HCE-T and VERO cells at MOIs of 0.04 and 0.02, respectively. After 1 h, 0, 10, 50, and 100 μg/ml LPS was added to serum-free medium and the cells were cultured for up to 24 h. GFP fluorescence of HHV-g4 in cells was examined under a fluorescence microscope and imaged. HHV-1f titer was determined by quantitative real-time polymerase chain reaction (qPCR) in HCE-T cells and plaque assays in VERO cells. The expression of the viral ICP4 protein of HHV-1f was detected by Western blot assay. IL-6 and IL-10 levels in culture medium were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Similar changes but at different degrees were found in HCE-T and VERO cells that were infected with HHV-1. GFP fluorescence of HHV-g4 and cell lesions increased in a dose-dependent manner. Virus titer was also enhanced by LPS stimulation in HCE-T and VERO cells. ICP4 expression was promoted at higher LPS concentrations (P = 0.04). In addition, viral infection resulted in increased expression of IL-6 in a dose-dependent manner at 12 and 24 h (P = 0.01), while IL-10 expression was unaffected by either HHV-1 infection or LPS stimulation. CONCLUSION LPS promotes HHV-1 infection in epithelial cells, which suggests that gram-negative bacteria on ocular surfaces may aggravate HHV-1 infection.
Collapse
Affiliation(s)
- Weiting Zeng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, the Key Lab of Ophthalmology and Visual Science of Guangdong, Sun Yat-sen University, Guangzhou, China
| | - Yafang Zhang
- Department of Ophthalmology, Hubei University of Science and Technology, Xianning, China
| | - Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, the Key Lab of Ophthalmology and Visual Science of Guangdong, Sun Yat-sen University, Guangzhou, China
| | - Tianlan Lin
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, the Key Lab of Ophthalmology and Visual Science of Guangdong, Sun Yat-sen University, Guangzhou, China
| | - Xiuping Liu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, the Key Lab of Ophthalmology and Visual Science of Guangdong, Sun Yat-sen University, Guangzhou, China
| | - Dai Li
- Department of Ophthalmology, Hubei University of Science and Technology, Xianning, China.
| | - Kaili Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, the Key Lab of Ophthalmology and Visual Science of Guangdong, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Shivaji S, Jayasudha R, Sai Prashanthi G, Kalyana Chakravarthy S, Sharma S. The Human Ocular Surface Fungal Microbiome. ACTA ACUST UNITED AC 2019; 60:451-459. [DOI: 10.1167/iovs.18-26076] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | | | - Gumpili Sai Prashanthi
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Sama Kalyana Chakravarthy
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|