1
|
Pimple SN, Pedler MG, Shieh B, Mandava A, McCourt E, Petrash JM. Human Breast Milk Enhances Cellular Proliferation in Cornea Wound Healing. Curr Eye Res 2024; 49:1138-1144. [PMID: 38979814 DOI: 10.1080/02713683.2024.2374836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Corneal epithelial defects from trauma or surgery heal as new epithelial cells grow centripetally from the limbus and replenish the epithelium. Corneal wound healing requires cell signalling molecules. However, a topical treatment with these components is not available. Human breast milk (HBM) offers a potential, novel treatment as it contains bioactive molecules important in epithelial cell healing. This study seeks to investigate the potential of HBM in cornea wound healing. METHODS Balb/c mice, 8-12 weeks old, were anesthetized prior to creating a 2 mm central cornea epithelial defect. Mice were randomly assigned to a treatment group: HBM, ophthalmic ointment containing neomycin, polymyxin B, dexamethasone (RxTx), or saline and treated 4x/day for 2 days. Wound area was quantified by fluorescein and ImageJ at 0, 8, 24, and 48 h post wounding and eyes used for histology, RT-qPCR, and ELISA. RESULTS Wounded corneas treated with HBM demonstrated increased re-epithelialization at 8 h post injury compared to saline treatments. ELISA showed significantly higher Ki67 in HBM treated eyes vs. saline control at 8 h (p = 0.0278). Additionally, immunohistology revealed more Ki67 positive cells in the HBM group compared to saline at 8 h and 24 h (p = 0.0063 8 h; p = 0.0007 24 h). For inflammatory analysis, HBM group IL-1β levels were similar to the saline group, and higher than RxTx treated eyes (p < 0.05). Immunohistochemical staining for CD11b (macrophage marker) revealed HBM-treated eyes had significantly more positive cells vs. saline. RT-qPCR of limbal stem cell markers (LESCs) revealed upregulation of Integrin αV at 8 h with HBM vs. saline. CONCLUSIONS HBM treatment on corneas with debridement of epithelium demonstrated improved healing, cellular proliferation, and upregulation of the LESC gene transcript, integrin αV, after wounding. Future studies could investigate LESC response to different signalling molecules in HBM to better understand the efficacy of this potential therapy.
Collapse
Affiliation(s)
- Sarah N Pimple
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| | - Anjali Mandava
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| | - Emily McCourt
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Kose F, Orhan I, Alan A, Cabir A, Beyaz F, Duzler A. A new perspective on the corneo-scleral junction with three types of microscopy techniques. Microsc Res Tech 2023; 86:629-635. [PMID: 36929228 DOI: 10.1002/jemt.24314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
The conjunctions of the cornea and sclera in the eyes of donkeys, cattle, dogs, sheep, pigs and rabbits, regardless of gender, were examined in this study. No animals were specifically sacrificed for this investigation. Scanning electron microscopy, light microscopy, and dissecting microscopy were used in this research. In the limbus of all the animals investigated, the cornea and sclera fused in accordance with a pattern. At the corneo-scleral junction, the sclera was situated anteriorly and the cornea posteriorly in the dorsal and ventral sections of the bulbus oculi. In the medial and lateral parts of the eyeball, the cornea and sclera were facing each other and interlaced. Pigmentation and the sulcus scleralis externus could be used to identify the macro-and micro-anatomical boundaries of the limbus. In addition, the cytoplasm of basal epithelial cells shrank, signaling the end of the corneal epithelium and the start of the conjunctival epithelium. The presence of Bowman's membrane in cattle and sheep eyes was definitely determined in histological examinations. Bowman's membrane in these animals came to an end at the limbus, which is where the conjunctival epithelium starts and the corneal epithelium ends. In all areas of the cornea, Bowman's membrane revealed irregular, abrupt thickening and thinning. The corneal epithelium was thick in the vertex and thinner towards the limbus, whereas Descemet's membrane was thin in the center (vertex) and thick in the periphery (near the limbus). In this study, pictures and diagrams were used to illustrate the general anatomical, histological, and morphometric characteristics of the limbus in the species under investigation. The data from our study showed that the limbus region of the bulbus oculi was narrow in the lateral and medial parts and wide in the dorsal and ventral parts. This was confirmed in the studied animals as a general rule. The width value will undoubtedly affect the number of cells covered by the regions. It is conceivable that these cells will play a significant role in the decision of where to perform surgical procedures in order to promote wound healing, giving doctors an advantage. In this circumstances, we think that the limbus should be studied in terms of clinical methods because it has different shapes depending on the species and the position of the bulbus.
Collapse
Affiliation(s)
- Fatma Kose
- Department of Veterinary Anatomy, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Imdat Orhan
- Erciyes Üniversitesi Teknoloji Geliştirme Bölgesi (TEKNOPARK), Kayseri, Turkey
| | - Aydın Alan
- Faculty of Veterinary Medicine, Department of Anatomy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cabir
- Department of Veterinary Histology and Embryology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Feyzullah Beyaz
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ayhan Duzler
- Faculty of Veterinary Medicine, Department of Anatomy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
4
|
Lee V, Rompolas P. Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics. Curr Opin Genet Dev 2022; 77:101981. [PMID: 36084496 PMCID: PMC9938714 DOI: 10.1016/j.gde.2022.101981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023]
Abstract
The discovery of slow-cycling cells at the corneal periphery three decades ago established the limbus as the putative corneal stem cell niche. Since then, studies have underscored the importance of the limbal stem cells in maintaining the health and function of the ocular surface. Advancements in our understanding of stem cell biology have been successfully translated into stem cell therapies for corneal diseases. Here, we review recent developments in mouse genetics, intravital imaging, and single-cell genomics that have revealed an underappreciated complexity of the limbal stem cells, from their molecular identity, function, and interactions with their niche environment. Continued efforts to elucidate stem cell dynamics of this extraordinary tissue are critical for not only understanding stem cell biology but also for advancing therapeutic innovation and development.
Collapse
Affiliation(s)
- Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panteleimon Rompolas
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Nguyen HT, Theerakittayakorn K, Somredngan S, Ngernsoungnern A, Ngernsoungnern P, Sritangos P, Ketudat-Cairns M, Imsoonthornruksa S, Assawachananont J, Keeratibharat N, Wongsan R, Rungsiwiwut R, Laowtammathron C, Bui NX, Parnpai R. Signaling Pathways Impact on Induction of Corneal Epithelial-like Cells Derived from Human Wharton’s Jelly Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23063078. [PMID: 35328499 PMCID: PMC8949174 DOI: 10.3390/ijms23063078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Corneal epithelium, the outmost layer of the cornea, comprises corneal epithelial cells (CECs) that are continuously renewed by limbal epithelial stem cells (LESCs). Loss or dysfunction of LESCs causes limbal stem cell deficiency (LSCD) which results in corneal epithelial integrity loss and visual impairment. To regenerate the ocular surface, transplantation of stem cell-derived CECs is necessary. Human Wharton’s jelly derived mesenchymal stem cells (WJ-MSCs) are a good candidate for cellular therapies in allogeneic transplantation. This study aimed to test the effects of treatments on three signaling pathways involved in CEC differentiation as well as examine the optimal protocol for inducing corneal epithelial differentiation of human WJ-MSCs. All-trans retinoic acid (RA, 5 or 10 µM) inhibited the Wnt signaling pathway via suppressing the translocation of β-catenin from the cytoplasm into the nucleus. SB505124 downregulated the TGF-β signaling pathway via reducing phosphorylation of Smad2. BMP4 did not increase phosphorylation of Smad1/5/8 that is involved in BMP signaling. The combination of RA, SB505124, BMP4, and EGF for the first 3 days of differentiation followed by supplementing hormonal epidermal medium for an additional 6 days could generate corneal epithelial-like cells that expressed a CEC specific marker CK12. This study reveals that WJ-MSCs have the potential to transdifferentiate into CECs which would be beneficial for further applications in LSCD treatment therapy.
Collapse
Affiliation(s)
- Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
| | - Apichart Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Piyada Ngernsoungnern
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Pishyaporn Sritangos
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (A.N.); (P.N.); (P.S.)
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (M.K.-C.); (S.I.)
| | - Sumeth Imsoonthornruksa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (M.K.-C.); (S.I.)
| | - Juthaporn Assawachananont
- School of Ophthalmology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Rangsirat Wongsan
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10000, Thailand;
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10000, Thailand;
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (H.T.N.); (K.T.); (S.S.)
- Correspondence: ; Tel.: +66-442-242-34
| |
Collapse
|
6
|
Kesper C, Viestenz A, Wiese-Rischke C, Scheller M, Hammer T. Impact of the transcription factor IRF8 on limbal epithelial progenitor cells in a mouse model. Exp Eye Res 2022; 218:108985. [DOI: 10.1016/j.exer.2022.108985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
|
7
|
Song Z, Tsai CH, Mei H. Comparison of different methods to isolate mouse limbal epithelial cells. Exp Eye Res 2021; 212:108767. [PMID: 34534542 DOI: 10.1016/j.exer.2021.108767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Limbal stem cells (LSCs) are the stem cell reservoir for corneal epithelium. The protocol to isolate LSCs from human cornea has been examined and optimized. However, the isolation protocol has not been optimized for mouse cornea, which is crucial for the downstream cell analysis. Here we compared four different isolation methods evolved from the previous reports to obtain mouse limbal epithelial cells which are heterogeneous and contain LSCs in a single-cell suspension: (1) the dissected limbal rim was cut into pieces and digested by 10-cycle incubation in trypsin; (2) after the removal of corneal epithelium by a rotating bur, the remaining eyeball was incubated in dispase at 4 °C for overnight to obtain limbal epithelial sheet, followed by trypsin digestion into a single-cell suspension; (3) same as method 2 except that the incubation was in dispase at 37 °C for 2h and an additional collagenase incubation at 37 °C for 20 min; (4) same as method 3 except that the corneal epithelium was punctured by a 1.5 mm trephine instead of being removed by a rotating bur. Method 1 showed the lowest cell yield, the lowest percentage of single cells, and the lowest number of limbal epithelial stem/progenitor cells in the harvested cells among the four methods, thus not a recommended protocol. Method 2, 3, and 4 isolated a comparable number of K14+ and p63α-bright stem/progenitor cells per eye. The remaining eye globe after cell collection in the three methods showed a complete removal of limbal epithelium albeit different extent of corneal and limbal stromal digestion. Among the three methods, method 2 showed a higher cell viability than method 4; method 3 yielded the lowest cell number; method 4 led to the highest percentage of single cells in cell suspension. Results suggest that method 2, 3, and 4 are preferred methods to isolate heterogeneous-LSCs from mouse corneas.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; School of Medicine, Hunan Normal University, 371 Tongzipo Road, Chang Sha, 410003, China.
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hua Mei
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|