1
|
Sung YS, Khvalbota L, Dhaubhadel U, Špánik I, Armstrong DW. Teicoplanin aglycone media and carboxypeptidase Y: Tools for finding low-abundance D-amino acids and epimeric peptides. Chirality 2023. [PMID: 36929217 DOI: 10.1002/chir.23543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/25/2022] [Accepted: 01/26/2023] [Indexed: 03/18/2023]
Abstract
D-amino acids and epimeric peptides/proteins can play crucial biological roles and adversely affect protein folding and oligopeptide aggregation in age-related pathologies in humans. This has ignited interest in free D-amino acids as well as those incorporated in peptides/proteins and their effects in humans. However, such stereoisomeric analytes are often elusive and in low abundance with few existing methodologies capable of scouting for and identifying them. In this work, we examine the feasibility of using teicoplanin aglycone, a macrocyclic antibiotic, which has been reported to strongly retain D-amino acids and peptides with a D-amino acid on the C-terminus, for use as a solid phase extraction (SPE) medium. The HPLC retention factors of L-/D-amino acids and C-terminus modified D-amino acid-containing peptides and their L-amino acid exclusive counterparts on teicoplanin aglycone are presented. Retention curve differences between amino acids and peptides highlight regions of solvent composition that can be utilized for their separation. This approach is particularly useful when coupled with enzymatic hydrolysis via carboxypeptidase Y to eliminate all L-amino acid exclusive peptides. The remaining peptides with carboxy-terminal D-amino acids are then more easily concentrated and identified.
Collapse
Affiliation(s)
- Yu-Sheng Sung
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Liudmyla Khvalbota
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Umang Dhaubhadel
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
2
|
Gibson K, Cooper-Shepherd DA, Pallister E, Inman SE, Jackson SE, Lindo V. Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1204-1212. [PMID: 35609180 PMCID: PMC9264384 DOI: 10.1021/jasms.2c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is an increasing emphasis on the critical evaluation of interbatch purity and physical stability of therapeutic peptides. This is due to concerns over the impact that product- and process-related impurities may have on safety and efficacy of this class of drug. Aspartic acid isomerization to isoaspartic acid is a common isobaric impurity that can be very difficult to identify without first synthesizing isoAsp peptide standards for comparison by chromatography. As such, analytical tools that can determine if an Asp residue has isomerized, as well as the site of isomerization within the peptide sequence, are highly sought after. Ion mobility-mass spectrometry is a conformation-selective method that has developed rapidly in recent years particularly with the commercialization of traveling wave ion mobility instruments. This study employed a cyclic ion mobility (cIMS) mass spectrometry system to investigate the conformational characteristics of a therapeutic peptide and three synthetic isomeric forms, each with a single Asp residue isomerized to isoAsp. cIMS was able to not only show distinct conformational differences between each peptide but crucially, in conjunction with a simple workflow for comparing ion mobility data, it correctly located which Asp residue in each peptide had isomerized to isoAsp. This work highlights the value of cIMS as a potential screening tool in the analysis of therapeutic peptides prone to the formation of isoAsp impurities.
Collapse
Affiliation(s)
- Katherine Gibson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | | | - Edward Pallister
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Inman
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Jackson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Viv Lindo
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| |
Collapse
|
3
|
Magami K, Hachiya N, Morikawa K, Fujii N, Takata T. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide. PLoS One 2021; 16:e0250277. [PMID: 33857260 PMCID: PMC8049310 DOI: 10.1371/journal.pone.0250277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications are often detected in age-related diseases associated with protein misfolding such as cataracts from aged lenses. One of the major post-translational modifications is the isomerization of aspartate residues (L-isoAsp), which could be non-enzymatically and spontaneously occurring in proteins, resulting in various effects on the structure and function of proteins including short peptides. We have reported that the structure and function of an αA66–80 peptide, corresponding to the 66–80 (66SDRDKFVIFLDVKHF80) fragment of human lens αA-crystallin, was dramatically altered by the isomerization of aspartate residue (Asp) at position 76. In the current study, we observed amyloid-like fibrils of L-isoAsp containing αA66–80 using electron microscopy. The contribution of each amino acid for the peptide structure was further evaluated by circular dichroism (CD), bis-ANS, and thioflavin T fluorescence using 14 alanine substituents of αA66–80, including L-isoAsp at position 76. CD of 14 alanine substituents demonstrated random coiled structures except for the substituents of positively charged residues. Bis-ANS fluorescence of peptide with substitution of hydrophobic residue with alanine revealed decreased hydrophobicity of the peptide. Thioflavin T fluorescence also showed that the hydrophobicity around Asp76 of the peptide is important for the formation of amyloid-like fibrils. One of the substitutes, H79A (SDRDKFVIFL(L-isoD)VKAF) demonstrated an exact β-sheet structure in CD and highly increased Thioflavin T fluorescence. This phenomenon was inhibited by the addition of protein-L-isoaspartate O-methyltransferase (PIMT), which is an enzyme that changes L-isoAsp into Asp. These interactions were observed even after the formation of amyloid-like fibrils. Thus, isomerization of Asp in peptide is key to form fibrils of αA-crystallin-derived peptide, and L-isoAsp on fibrils can be a candidate for disassembling amyloid-like fibrils of αA-crystallin-derived peptides.
Collapse
Affiliation(s)
- Kosuke Magami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Kazuo Morikawa
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
| | - Takumi Takata
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
- * E-mail:
| |
Collapse
|
4
|
Cantrell LS, Schey KL. Proteomic characterization of the human lens and Cataractogenesis. Expert Rev Proteomics 2021; 18:119-135. [PMID: 33849365 DOI: 10.1080/14789450.2021.1913062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Isomerization of Aspartyl Residue in Amyloid Beta Fragments: The Kinetics by Real-Time 1H NMR Under Neutral and Basic Conditions. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-01018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Enríquez-Flores S, Flores-López LA, García-Torres I, de la Mora-de la Mora I, Cabrera N, Gutiérrez-Castrellón P, Martínez-Pérez Y, López-Velázquez G. Deamidated Human Triosephosphate Isomerase is a Promising Druggable Target. Biomolecules 2020; 10:E1050. [PMID: 32679775 PMCID: PMC7407242 DOI: 10.3390/biom10071050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the tim gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.A.F.-L.); (I.G.-T.); (I.d.l.M.-d.l.M.)
| | - Luis Antonio Flores-López
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.A.F.-L.); (I.G.-T.); (I.d.l.M.-d.l.M.)
- CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Itzhel García-Torres
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.A.F.-L.); (I.G.-T.); (I.d.l.M.-d.l.M.)
| | - Ignacio de la Mora-de la Mora
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.A.F.-L.); (I.G.-T.); (I.d.l.M.-d.l.M.)
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | | - Yoalli Martínez-Pérez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Gabriel López-Velázquez
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.A.F.-L.); (I.G.-T.); (I.d.l.M.-d.l.M.)
| |
Collapse
|
7
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
8
|
Fujii N, Takata T, Kim I, Morishima K, Inoue R, Magami K, Matsubara T, Sugiyama M, Koide T. Asp isomerization increases aggregation of α-crystallin and decreases its chaperone activity in human lens of various ages. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140446. [PMID: 32442520 DOI: 10.1016/j.bbapap.2020.140446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
α-Crystallin, comprising 40-50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10-76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10-450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10-20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lβ-, Dα-, Dβ-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography-mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dβ-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.
Collapse
Affiliation(s)
- Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan.
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Ingu Kim
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Kousuke Magami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Tamaki Koide
- Rexxam Co., Ltd., Nishi-ku, Nagoya, Aichi 541-0054, Japan
| |
Collapse
|