1
|
Xu Y, Zhu XY, Feng H, Yu XP, Wang Y, Rong X, Qi TY. The value of quantitative contrast-enhanced ultrasonography analysis in evaluating central retinal artery microcirculation in patients with diabetes mellitus: comparison with colour Doppler imaging. Clin Radiol 2024; 79:e560-e566. [PMID: 38336532 DOI: 10.1016/j.crad.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
AIM To compare the efficacy of quantitative contrast-enhanced ultrasonography (CEUS) analysis and colour Doppler ultrasound (CDU) in evaluating central retinal artery (CRA) microcirculation in patients with diabetes mellitus (DM). MATERIALS AND METHODS In this prospective study, a total of 55 patients (98 eyes) with DM were enrolled as the study group. They were compared to 46 age-matched healthy volunteers (92 eyes) who were selected as the control group. Each patient underwent CDU and subsequent CEUS examination. CDU and quantitative CEUS parameters were evaluated. The diagnostic efficiency of the diagnostic performance of CEUS and CDU was evaluated and compared, and the scale thresholds of predictive indicators for the diagnosis of proliferative diabetic retinopathy (PDR) were evaluated using receiver operating characteristics (ROC) curve analyses. RESULTS Group pairwise comparisons showed that the end diastolic velocity (EDV) and arrival time (AT) of CRA were significant predictors for PDR by CDU and by quantitative CEUS analysis, respectively (all p<0.05). The ROC curve analysis showed that the area under the curve value of AT was significantly higher than that of EDV (0.875 versus 0.634, p=0.0002). Accordingly, an AT cut-off value of 1.07 seconds resulted a sensitivity of 90.62 % and a specificity of 79.31 %. CONCLUSION Quantitative CEUS analysis can improve the accuracy of clinical staging of diabetic retinopathy for the patients with DM, and the AT showed the best diagnostic efficiency.
Collapse
Affiliation(s)
- Y Xu
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X Y Zhu
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - H Feng
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X P Yu
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - Y Wang
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X Rong
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - T Y Qi
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China.
| |
Collapse
|
2
|
Dhamija P, Mehata AK, Setia A, Priya V, Malik AK, Bonlawar J, Verma N, Badgujar P, Randhave N, Muthu MS. Nanotheranostics: Molecular Diagnostics and Nanotherapeutic Evaluation by Photoacoustic/Ultrasound Imaging in Small Animals. Mol Pharm 2023; 20:6010-6034. [PMID: 37931040 DOI: 10.1021/acs.molpharmaceut.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotheranostics is a rapidly developing field that integrates nanotechnology, diagnostics, and therapy to provide novel methods for imaging and treating wide categories of diseases. Targeted nanotheranostics offers a platform for the precise delivery of theranostic agents, and their therapeutic outcomes are monitored in real-time. Presently, in vivo magnetic resonance imaging, fluorescence imaging, ultrasound imaging, and photoacoustic imaging (PAI), etc. are noninvasive imaging techniques that are preclinically available for the imaging and tracking of therapeutic outcomes in small animals. Additionally, preclinical imaging is essential for drug development, phenotyping, and understanding disease stage progression and its associated mechanisms. Small animal ultrasound imaging is a rapidly developing imaging technique for theranostics applications due to its merits of being nonionizing, real-time, portable, and able to penetrate deep tissues. Recently, different types of ultrasound contrast agents have been explored, such as microbubbles, echogenic exosomes, gas-vesicles, and nanoparticles-based contrast agents. Moreover, an optical image obtained through photoacoustic imaging is a noninvasive imaging technique that creates ultrasonic waves when pulsed laser light is used to expose an object and creates a picture of the tissue's distribution of light energy absorption on the object. Contrast agents for photoacoustic imaging may be endogenous (hemoglobin, melanin, and DNA/RNA) or exogenous (dyes and nanomaterials-based contrast agents). The integration of nanotheranostics with photoacoustic and ultrasound imaging allows simultaneous imaging and treatment of diseases in small animals, which provides essential information about the drug response and the disease progression. In this review, we have covered various endogenous and exogenous contrast agents for ultrasound and photoacoustic imaging. Additionally, we have discussed various drug delivery systems integrated with contrast agents for theranostic application. Further, we have briefly discussed the current challenges associated with ultrasound and photoacoustic imaging.
Collapse
Affiliation(s)
- Piyush Dhamija
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Qian X, Huang C, Li R, Song BJ, Tchelepi H, Shung KK, Chen S, Humayun MS, Zhou Q. Super-Resolution Ultrasound Localization Microscopy for Visualization of the Ocular Blood Flow. IEEE Trans Biomed Eng 2022; 69:1585-1594. [PMID: 34652993 PMCID: PMC9113921 DOI: 10.1109/tbme.2021.3120368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ocular vascular system plays an important role in preserving the visual function. Alterations in either anatomy or hemodynamics of the eye may have adverse effects on vision. Thus, an imaging approach that can monitor alterations of ocular blood flow of the deep eye vasculature ranging from capillary-level vessels to large supporting vessels would be advantageous for detection of early stage retinal and optic nerve diseases. METHODS We propose a super-resolution ultrasound localization microscopy (ULM) technique that can assess both the microvessel and flow velocity of the deep eye with high resolution. Ultrafast plane wave imaging was acquired using an L22-14v linear array on a high frequency Verasonics Vantage system. A robust microbubble localization and tracking technique was applied to reconstruct ULM images. The experiment was first performed on pre-designed flow phantoms in vitro and then tested on a New Zealand white rabbit eye in vivo calibrated to various intraocular pressures (IOP) - 10 mmHg, 30 mmHg and 50 mmHg. RESULTS We demonstrated that retinal/choroidal vessels, central retinal artery, posterior ciliary artery, and vortex vein were all visible at high resolution. In addition, reduction of vascular density and flow velocity were observed with elevated IOPs. CONCLUSION These results indicate that super-resolution ULM is able to image the deep ocular tissue while maintaining high resolution that is comparable with optical coherence tomography angiography. SIGNIFICANCE Capability to detect subtle changes of blood flow may be clinically important in detecting and monitoring eye diseases such as glaucoma.
Collapse
|
4
|
Mac Grory B, Schrag M, Poli S, Boisvert CJ, Spitzer MS, Schultheiss M, Nedelmann M, Yaghi S, Guhwe M, Moore EE, Hewitt HR, Barter KM, Kim T, Chen M, Humayun L, Peng C, Chhatbar PY, Lavin P, Zhang X, Jiang X, Raz E, Saidha S, Yao J, Biousse V, Feng W. Structural and Functional Imaging of the Retina in Central Retinal Artery Occlusion - Current Approaches and Future Directions. J Stroke Cerebrovasc Dis 2021; 30:105828. [PMID: 34010777 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/28/2023] Open
Abstract
Central retinal artery occlusion (CRAO) is a form of acute ischemic stroke which affects the retina. Intravenous thrombolysis is emerging as a compelling therapeutic approach. However, it is not known which patients may benefit from this therapy because there are no imaging modalities that adequately distinguish viable retina from irreversibly infarcted retina. The inner retina receives arterial supply from the central retinal artery and there is robust collateralization between this circulation and the outer retinal circulation, provided by the posterior ciliary circulation. Fundus photography can show canonical changes associated with CRAO including a cherry-red spot, arteriolar boxcarring and retinal pallor. Fluorescein angiography provides 2-dimensional imaging of the retinal circulation and can distinguish a complete from a partial CRAO as well as central versus peripheral retinal non-perfusion. Transorbital ultrasonography may assay flow through the central retinal artery and is useful in the exclusion of other orbital pathology that can mimic CRAO. Optical coherence tomography provides structural information on the different layers of the retina and exploratory work has described its utility in determining the time since onset of ischemia. Two experimental techniques are discussed. 1) Retinal functional imaging permits generation of capillary perfusion maps and can assay retinal oxygenation and blood flow velocity. 2) Photoacoustic imaging combines the principles of optical excitation and ultrasonic detection and - in animal studies - has been used to determine the retinal oxygen metabolic rate. Future techniques to determine retinal viability in clinical practice will require rapid, easily used, and reproducible methods that can be deployed in the emergency setting.
Collapse
Affiliation(s)
- Brian Mac Grory
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Sven Poli
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany.
| | - Chantal J Boisvert
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Martin S Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Max Nedelmann
- Department of Neurology, Sana Regio Klinikum, Pinneberg, Germany.
| | - Shadi Yaghi
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Mary Guhwe
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Elizabeth E Moore
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Hunter R Hewitt
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kelsey M Barter
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Lucas Humayun
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Patrick Lavin
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Ophthalmology & Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Xuxiang Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| | - Eytan Raz
- Department of Radiology, NYU Langone Health, New York City, New York. USA.
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Valérie Biousse
- Departments of Ophthalmology and Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Silverman RH, Urs R, Tezel G, Yang X, Nelson I, Ketterling JA. Retrobulbar blood flow in rat eyes during acute elevation of intraocular pressure. Exp Eye Res 2021; 207:108606. [PMID: 33930396 DOI: 10.1016/j.exer.2021.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Most studies of the effect of acute elevation of intraocular pressure (IOP) on ocular blood-flow have utilized optical coherence tomography (OCT) to characterize retinal and choroidal flow and vascular density. This study investigates the effect of acute IOP elevation on blood flow velocity in the retrobulbar arteries and veins supplying and draining the eye, which, unlike the retinal and choroidal vasculature, are not directly compressed as IOP is increased. By cannulation of the anterior chamber of 20 Sprague-Dawley rats, we increased IOP in 10 mmHg steps from 10 to 60 mmHg and returned to 10 mmHg. After 1 min at each IOP (and 3 min after return to 10 mmHg), we acquired 18 MHz plane-wave ultrasound data at 3000 compound images/sec for 1.5 s. We produced color-flow Doppler images by digital signal processing of the ultrasound data, identified retrobulbar arteries and veins, generated spectrograms depicting flow velocity over the cardiac cycle and characterized changes of vascular density and perfusion in the orbit overall. Systolic, diastolic and mean velocities and resistive and pulsatile indices were determined from arterial spectrograms at each IOP level. Baseline mean arterial and mean venous velocities averaged 30.9 ± 10.8 and 8.5 ± 3.3 mm/s, respectively. Arterial velocity progressively decreased and resistance indices increased at and above an IOP of 30 mmHg. Mean arterial velocity at 60 mmHg dropped by 55% with respect to baseline, while venous velocity decreased by 20%. Arterial and venous velocities and resistance returned to near baseline after IOP was restored to 10 mmHg. Both vascular density and orbital perfusion decreased with IOP, but while perfusion returned to near normal when IOP returned to 10 mmHg, density remained reduced. Our findings are consistent with OCT-based studies showing reduced perfusion of the retina at levels comparable to retrobulbar arterial flow velocity change with increased IOP. The lesser effect on venous flow is possibly attributable to partial collapse of the venous lumen as volumetric venous outflow decreased at high IOP. The continued reduction in orbital vascular density 3 min after restoration of IOP to 10 mmHg might be attributable to persisting narrowing of capillaries, but this needs to be verified in future studies.
Collapse
Affiliation(s)
- Ronald H Silverman
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Raksha Urs
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulgun Tezel
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiangjun Yang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Inez Nelson
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey A Ketterling
- F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA
| |
Collapse
|