1
|
Visioli G, Romaniello A, Spinoglio L, Albanese GM, Iannetti L, Gagliardi OM, Lambiase A, Gharbiya M. Proliferative Vitreoretinopathy in Retinal Detachment: Perspectives on Building a Digital Twin Model Using Nintedanib. Int J Mol Sci 2024; 25:11074. [PMID: 39456855 PMCID: PMC11507981 DOI: 10.3390/ijms252011074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a pathological process characterized by the formation of fibrotic membranes that contract and lead to recurrent retinal detachment. Pars plana vitrectomy (PPV) is the primary treatment, but recurrence rates remain high, as surgery does not address the underlying molecular mechanisms driving fibrosis. Despite several proposed pharmacological interventions, no approved therapies exist, partly due to challenges in conducting preclinical and in vivo studies for ethical and safety reasons. This review explores the potential of computational models and Digital Twins, which are increasingly gaining attention in medicine. These tools could enable the development of progressively complex PVR models, from basic simulations to patient-specific Digital Twins. Nintedanib, a tyrosine kinase inhibitor targeting PDGFR, VEGFR, and FGFR, is presented as a prototype for computational models to simulate its effects on fibrotic pathways in virtual patient cohorts. Although still in its early stages, the integration of computational models and Digital Twins offers promising avenues for improving PVR management through more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Giacomo Visioli
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
| | - Annalisa Romaniello
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
| | - Leonardo Spinoglio
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
| | - Giuseppe Maria Albanese
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
| | - Ludovico Iannetti
- Ophthalmology Unit, Head and Neck Department, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Oscar Matteo Gagliardi
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
| | - Alessandro Lambiase
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
- Ophthalmology Unit, Head and Neck Department, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Magda Gharbiya
- Department of Sense Organs, Medicine and Dentistry Faculty, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.V.); (A.R.); (G.M.A.); (O.M.G.); (A.L.)
- Ophthalmology Unit, Head and Neck Department, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| |
Collapse
|
2
|
Deissler HL, Rehak M, Lytvynchuk L. VEGF-A 165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells. Exp Eye Res 2024; 247:110062. [PMID: 39187056 DOI: 10.1016/j.exer.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| | - Matus Rehak
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany; Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Roger I, Montero P, Milara J, Cortijo J. Pirfenidone and nintedanib attenuates pulmonary artery endothelial and smooth muscle cells transformations induced by IL-11. Eur J Pharmacol 2024; 972:176547. [PMID: 38561103 DOI: 10.1016/j.ejphar.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.
Collapse
Affiliation(s)
- Inés Roger
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain.
| | - Paula Montero
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Javier Milara
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain; Pharmacy Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Julio Cortijo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain; Research and Teaching Unit, University General Hospital Consortium, 46014, Valencia, Spain
| |
Collapse
|
4
|
Nakamura N, Honjo M, Yamagishi R, Sakata R, Watanabe S, Aihara M. Synergic effects of EP2 and FP receptors co-activation on Blood-Retinal Barrier and Microglia. Exp Eye Res 2023; 237:109691. [PMID: 37884204 DOI: 10.1016/j.exer.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Macular edema (ME) is caused with disruption of the blood-retinal barrier (BRB) followed by fluid accumulation in the subretinal space. Main components of the outer and inner BRB are retinal pigment epithelial (RPE) cells and retinal microvascular endothelial cells, respectively. In addition, glial cells also participate in the functional regulation of the BRB as the member of 'neurovascular unit'. Under various stresses, cells in neurovascular units secrete inflammatory cytokines. Neuroinflammation induced by these cytokines can cause BRB dysfunction by degrading barrier-related proteins and contribute to the pathophysiology of ME. Prostaglandins (PGs) are crucial lipid mediators involved in neuroinflammation. Among PGs, a novel EP2 agonist, omidenepag (OMD) acts on not only the uveoscleral pathway but also the conventional pathway, unlike F prostanoid (FP) receptor agonists. Moreover, the combination use of the EP and the FP agonist is not recommended because of the risk of inflammation. In this study, we investigated effects of OMD and latanoprost acid (LTA), a FP agonist, on BRB and microglia in vitro and in vivo. To investigate the function of outer/inner BRB and microglia, in vitro, ARPE-19 cells, human retinal microvascular endothelial cells (HRMECs), and MG5 cells were used. Cell viability, inflammatory cytokines mRNA and protein levels, barrier morphology/function, and microglial activation were evaluated using proliferation assays, qRT-PCR, ELISA, immunocytochemistry, trans-epithelial electrical resistance, and permeability assay. Moreover, after vitreous injection into the mouse, outer BRB morphology, glial activation, and cytokine expression were assessed. Each OMD and LTA alone did not affect the viability or cytokines expression of the three types of cells. In ARPE-19 cells, the co-stimulation of OMD and LTA increased the mRNA and protein levels of inflammatory cytokines (IL-6, TNF-α, and VEGF-A) and decreased the barrier function and the junction-related protein (ZO-1 and β-catenin). By contrast in HRMECs, the co-stimulation affected significant differences in the mRNA levels of some cytokine (IL-6 and TNF-α) but enhanced the barrier function. In MG5 cells, the cytokines mRNA and size of Iba1-expressed cell were increased. A non-steroidal anti-inflammatory inhibited the barrier dysfunction and the junction-related protein downregulation in ARPE-19 cells and activation of MG5 cells. Also in vivo, the co-stimulation induced outer BRB disruption, cytokine increase, and retinal glial activation. Therefore, the co-stimulation of EP2 and FP induced the inflammatory cytokine-mediated outer BRB disruption, the enhanced inner BRB function, and the microglial activation. The BRB imbalance and the intrinsic prostaglandin production may be involved in OMD-related inflammation.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Beuse A, Deissler HL, Hollborn M, Unterlauft JD, Busch C, Rehak M. Different responses of the MIO‑M1 Mueller cell line to angiotensin II under hyperglycemic or hypoxic conditions. Biomed Rep 2023; 19:62. [PMID: 37614982 PMCID: PMC10442740 DOI: 10.3892/br.2023.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Members of the renin-angiotensin aldosterone system (RAAS) are expressed by various retinal tissues including Mueller glial cells. As the RAAS is hypothesized to play an important role in the pathogenesis of diseases that threaten vision, such as diabetic macular edema or retinal vein occlusion, the possible changes induced by exposure of the human cell line MIO-M1, an established model of Mueller cells, to angiotensin II or aldosterone for 6 h under hypoxic and/or hyperglycemic conditions were investigated. The mRNA expression levels of the members of the RAAS were assessed by reverse transcription-quantitative PCR, and the secretion of cytokines was assessed by ELISA. Under hyperglycemic conditions, the mRNA expression levels of the angiotensin-converting enzyme 2 (ACE2), angiotensin II receptors, AT1 and AT2, and the receptor of angiotensin (1-7) MAS1 were significantly higher after exposure to angiotensin II, and the expression of ACE2, AT2, and IL-6 (a marker of inflammation) was significantly increased after treatment with aldosterone; the expression of the other targets investigated remained unchanged. Significantly more IL-6 was secreted by MIO-M1 cells exposed to hyperglycemia and angiotensin. When cells were cultured in a hypoxic environment, additional treatment with aldosterone significantly increased the mRNA expression levels of ACE, but significantly more ACE2 mRNA was expressed in the presence of angiotensin II. Under hypoxic plus hyperglycemic conditions, significantly less ACE but more AT2 was expressed after treatment with angiotensin II, which also led to strongly elevated expression of IL-6. The mRNA expression levels of the angiogenic growth factor VEGF-A and secretion of the encoded protein were notably increased under hypoxic and hypoxic plus hyperglycemic conditions, irrespective of additional treatment with angiotensin II or aldosterone. These findings suggest that angiotensin II induces a pro-inflammatory response in MIO-M1 cells under hyperglycemic conditions despite activation of the counteracting ACE2/MAS1 signaling cascade. However, hypoxia results in an increased expression of angiogenic VEGF-A by these cells, which is not altered by angiotensin II or aldosterone.
Collapse
Affiliation(s)
- Ansgar Beuse
- Department of Ophthalmology, University of Leipzig, D-04103 Leipzig, Germany
| | - Heidrun L. Deissler
- Department of Ophthalmology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Margrit Hollborn
- Department of Ophthalmology, University of Leipzig, D-04103 Leipzig, Germany
| | - Jan Darius Unterlauft
- Department of Ophthalmology, University of Leipzig, D-04103 Leipzig, Germany
- Department of Ophthalmology, University of Bern, 3010 Bern, Switzerland
| | - Catharina Busch
- Department of Ophthalmology, University of Leipzig, D-04103 Leipzig, Germany
| | - Matus Rehak
- Department of Ophthalmology, University of Leipzig, D-04103 Leipzig, Germany
- Department of Ophthalmology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
6
|
Yin Y, Liu S, Pu L, Luo J, Liu H, Wu W. Nintedanib prevents TGF-β2-induced epithelial-mesenchymal transition in retinal pigment epithelial cells. Biomed Pharmacother 2023; 161:114543. [PMID: 36933383 DOI: 10.1016/j.biopha.2023.114543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a key fibrosis pathogenesis in proliferative vitreoretinopathy (PVR). However, few medicines can prevent proliferative membranes and cell proliferation in the clinic. Nintedanib, a tyrosine kinase inhibitor, has been shown to prevent fibrosis and be anti-inflammatory in multiple organ fibrosis. In our study, 0.1, 1, 10 μM nintedanib was added to 20 ng/mL transforming growth factor beta 2 (TGF-β2)-induced EMT in ARPE-19 cells. Western blot and immunofluorescence assay showed that 1 μM nintedanib suppressed TGF-β2-induced E-cadherin expression decreased and Fibronectin, N-cadherin, Vimentin, and α-SMA expression increased. Quantitative real-time PCR results showed that 1 μM nintedanib decreased TGF-β2-induced increase in SNAI1, Vimentin, and Fibronectin expression and increased TGF-β2-induced decrease in E-cadherin expression. In addition, the CCK-8 assay, wound healing assay, and collagen gel contraction assay also showed that 1 μM nintedanib ameliorated TGF-β2-induced cell proliferation, migration, and contraction, respectively. These results suggested that nintedanib inhibits TGF-β2-induced EMT in ARPE-19 cells, which may be a potential pharmacological treatment for PVR.
Collapse
Affiliation(s)
- Yiwei Yin
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China; Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Shikun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Pu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jing Luo
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hanhan Liu
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
7
|
Calpain-2 Facilitates Autophagic/Lysosomal Defects and Apoptosis in ARPE-19 Cells and Rats Induced by Exosomes from RPE Cells under NaIO 3 Stimulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3310621. [PMID: 36703913 PMCID: PMC9873447 DOI: 10.1155/2023/3310621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Although accumulated evidence supports the notion that calpain contributes to eye disease, the mechanisms by which calpain promotes RPE injury are not defined. The present study is aimed at investigating whether the effect of NaIO3-exos (exosomes derived from RPE cells under NaIO3 stimulation) on the dysfunction of the autophagy-lysosomal pathway (ALP) and apoptosis is based on its regulation of calpain activation in ARPE-19 cells and rats. The results showed that calpain-2 activation, ALP dysfunction, and apoptosis were induced by NaIO3-exos in ARPE-19 cells. NaIO3-exo significantly increased autophagic substrates by activating lysosomal dysfunction. ALP dysfunction and apoptosis in vitro could be eliminated by knocking down calpain-2 (si-C2) or the inhibitor calpain-2-IN-1. Further studies indicated that NaIO3-exo enhanced calpain-2 expression, ALP dysfunction, apoptosis, and retinal damage in rats. In summary, these results demonstrate for the first time that calpain-2 is one of the key players in the NaIO3-exo-mediated ALP dysfunction, apoptosis, and retinal damage and identify calpain-2 as a promising target for therapies aimed at age-related macular degeneration (AMD).
Collapse
|
8
|
Zou J, Tan W, Liu K, Chen B, Duan T, Xu H. Wnt inhibitory factor 1 ameliorated diabetic retinopathy through the AMPK/mTOR pathway-mediated mitochondrial function. FASEB J 2022; 36:e22531. [PMID: 36063130 DOI: 10.1096/fj.202200366rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and will lead to visual impairment. We aim to explore the effects and mechanisms of wnt inhibitory factor 1 (WIF1) in the progression of DR. To establish DR in vitro and in vivo, human retinal pigment epithelium (RPE) cell line ARPE-19 was treated with high-glucose (HG) and diabetic mice models were induced by streptozotocin (STZ), respectively. Different dose of recombinant WIF1 protein was used to treat DR. qRT-PCR and western blotting results demonstrated that WIF1 was downregulated, while VEGFA was upregulated in HG-induced ARPE-19 cells. WIF1 overexpression promoted cell migration. The ARPE-19 cells culture medium treated with WIF1 inhibited retinal endothelial cell tube formation and downregulated VEGFA expression. Moreover, WIF1 decreased the levels of ROS and MDA, while increasing the activity of SOD and GPX. WIF1 increased the ΔΨm in the mitochondria and downregulated the expression of mitochondrial autophagy-related proteins including Parkin, Pink1, LC3-II/LC3-I ratio, cleaved caspase 3, and cyt-c, which ameliorated mitochondrial dysfunction. The in vivo studies further demonstrated the consistent effects of WIF1 in STZ-induced mice. Taken together, WIF1 ameliorated mitochondrial dysfunction in DR by downregulating the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Kangcheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bolin Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - TianQi Duan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
9
|
Nintedanib Inhibits Endothelial Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis via Focal Adhesion Kinase Activity Reduction. Int J Mol Sci 2022; 23:ijms23158193. [PMID: 35897764 PMCID: PMC9332002 DOI: 10.3390/ijms23158193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD). Pulmonary fibroblasts play an important role in the development of IPF. Emerging evidence indicates that pulmonary endothelial cells could be the source of pulmonary fibroblasts through endothelial mesenchymal transition (EndoMT), which contributes to pulmonary fibrosis. EndoMT is a complex process in which endothelial cells lose their expression of endothelial markers and give rise to the characteristics of mesenchymal cells, including morphological fibroblast-like change and the expression of mesenchymal markers, which result in cardiac, renal, and dermal fibroses. Furthermore, EndoMT inhibition attenuates pulmonary fibrosis. Herein, we demonstrate that nintedanib, a tyrosine kinase receptor inhibitor, ameliorated murine bleomycin (BLM)-induced pulmonary fibrosis and suppressed the in vivo and in vitro models of EndoMT. We demonstrated that the activity of focal adhesion kinase (FAK), a key EndoMT regulator, increased in murine lung tissues and human pulmonary microvascular endothelial cells after BLM stimulation. Nintedanib treatment inhibited BLM-induced FAK activation and thus suppressed both in vivo and in vitro BLM-induced EndoMT. Importantly, we found that the VEGF/FAK signaling pathway was involved in nintedanib regulating EndoMT. These novel findings help us understand the mechanism and signaling pathway of EndoMT to further develop more efficacious drugs for IPF treatment.
Collapse
|
10
|
Deissler HL, Busch C, Wolf A, Rehak M. Beovu, but not Lucentis impairs the function of the barrier formed by retinal endothelial cells in vitro. Sci Rep 2022; 12:12493. [PMID: 35864147 PMCID: PMC9304347 DOI: 10.1038/s41598-022-16770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Because rare, but severe adverse effects, i.e. retinal vasculitis or retinal vein occlusion, have been observed after repetitive intravitreal injections of VEGF-A-binding single-chain variable fragment brolucizumab (Beovu), we investigated its possible impact on the barrier formed by immortalized bovine retinal endothelial cells (iBREC) in comparison to that of the VEGF-A-binding Fab fragment ranibizumab (Lucentis). As a measure of stability of the barrier formed by a confluent monolayer of iBREC, we determined the cell index over seven days by continuous electric cell-substrate impedance measurements: Beovu but not Lucentis indeed significantly lowered the cell index, evident about 1.5 days after its addition, pointing to barrier impairment. Early after addition of Beovu, amounts of the integrins α5 and β1-subunits of the fibronectin receptor-had changed in opposite ways, suggesting an effect on cell adhesion due to hindered dimer formation. After exposure for eight days to Beovu, levels of claudin-1-an essential part of the iBREC barrier-were significantly lower, less claudin-1 was located at the plasma membrane after exposure to the VEGF-A antagonist for five days. Beovu did not induce secretion of inflammatory cytokines or VEGF-A. Interestingly, polysorbate-80-component of Beovu-but not polysorbate-20-in Lucentis-slightly, but significantly lowered the cell index, also associated with reduced claudin-1 expression. In summary, our results indicate that Beovu changes the behavior of retinal endothelial cells, thus providing an alternative "non-immunological" explanation for the most relevant of observed side effects.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany. .,Department of Ophthalmology, Justus-Liebig-University Giessen, Friedrichstrasse 18, 35392, Giessen, Germany.
| | - Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Armin Wolf
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany
| | - Matus Rehak
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany.,Department of Ophthalmology, Justus-Liebig-University Giessen, Friedrichstrasse 18, 35392, Giessen, Germany
| |
Collapse
|
11
|
Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A 165 No Longer Depends on the Growth Factor's Presence. Biomolecules 2022; 12:biom12050734. [PMID: 35625661 PMCID: PMC9138398 DOI: 10.3390/biom12050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a measure of permeability—was persistently reduced by exposure to the growth factor. Late after addition of VEGF-A165 protein levels of claudin-1 and CD49e were significantly lower, those of CD29 significantly higher, and the plasmalemma vesicle associated protein was no longer detected. Nuclear levels of β-catenin were only elevated on day two. Extracellular levels of VEGF-A—measured by ELISA—were very low. Similar to the binding of the growth factor by brolucizumab, inhibition of VEGFR2 by tyrosine kinase inhibitors tivozanib or nintedanib led to complete, although transient, recovery of the low cell index when added early, though was inefficient when added three or six days later. Additional inhibition of other receptor tyrosine kinases by nintedanib was similarly unsuccessful, but additional blocking of c-kit by tivozanib led to sustained recovery of the low cell index, an effect observed only when the inhibitor was added early. From these data, we conclude that several days after the addition of VEGF-A165 to iBREC, barrier dysfunction is mainly sustained by increased paracellular flow and impaired adhesion. Even more important, these changes are most likely no longer VEGF-A-controlled.
Collapse
|
12
|
Fernandes AR, Dos Santos T, Granja PL, Sanchez-Lopez E, Garcia ML, Silva AM, Souto EB. Permeability, anti-inflammatory and anti-VEGF profiles of steroidal-loaded cationic nanoemulsions in retinal pigment epithelial cells under oxidative stress. Int J Pharm 2022; 617:121615. [PMID: 35217072 DOI: 10.1016/j.ijpharm.2022.121615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is defined as a degenerative, progressive and multifactorial disorder that affects the macula with a complex etiology. The retinal pigment epithelium is a monolayer of cells that has the function to separate the surface of the choroid from the neural retina that is involved in the signal transduction leading to vision. The blood-aqueous barrier and the blood retinal barrier limit the permeation of drugs into the retina and thereby reducing their efficacy. Triamcinolone acetonide (TA) is widely used as anti-inflammatory and immunomodulatory drug that promotes the inhibition of the inflammatory processes. The factors that stimulate or inhibit angiogenesis in AMD create a local balance that is responsible for the growth of sub-retinal neovascularization. In AMD, the main angiogenic stimulus is the vascular endothelial growth factor (VEGF). In this work, nanoemulsions with cationic surfactants (mono- and dicationic DABCO and quinuclidine) were produced to deliver TA, and were found to reduce the production of tumor necrosis factor alpha (TNF-α), which stimulates the choroidal neovascularization development by upregulating the VEGF production, and consequently decreased the VEGF levels. Our results support the potential use of mono- and dicationic DABCO and quinuclidine-based cationic nanoemulsions for the delivery of TA in the treatment of AMD.
Collapse
Affiliation(s)
- Ana R Fernandes
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Tiago Dos Santos
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro L Granja
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Maria L Garcia
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Amelia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
13
|
Deissler HL, Rehak M, Busch C, Wolf A. Blocking of VEGF-A is not sufficient to completely revert its long-term effects on the barrier formed by retinal endothelial cells. Exp Eye Res 2022; 216:108945. [PMID: 35038456 DOI: 10.1016/j.exer.2022.108945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
The VEGF-A-induced functional impairment of the barrier formed by retinal endothelial cells (REC) can be prevented and even - at least temporarily - reverted by trapping the growth factor in a complex with a VEGF-binding protein or by inhibiting the activity of the VEGF receptor 2 (VEGFR2). In an approach to emulate the clinically relevant situation of constant exposure to effectors, we investigated (1) whether prolonged exposure to VEGF-A165 for up to six days results in a different type of disturbance of the barrier formed by immortalized bovine REC (iBREC) and (2) whether alterations of the barrier induced by VEGF-A165 can indeed be sustainably reverted by subsequent treatment with the VEGF-A-binding proteins ranibizumab or brolucizumab. As a measure of barrier integrity, the cell index (CI) of iBREC cultivated on gold electrodes was monitored continuously. CI values declined shortly after addition of the growth factor and then remained low for more than six days over which considerable amounts of both extra- and intracellular VEGF-A were measured. Interestingly, the specific VEGFR2 inhibitor nintedanib normalized the lowered CI when added to iBREC pre-treated with VEGF-A165 for one day, but failed to do so when cells had been exposed to the growth factor for six days. Expression of the tight junction (TJ) protein claudin-5 was unchanged early after addition of VEGF-A165 but higher after prolonged treatment, whereas decreased amounts of the TJ-protein claudin-1 remained low, and increased expression of the plasmalemma vesicle-associated protein (PLVAP) remained high during further exposure. After two days, the characteristic even plasma membrane stainings of claudin-1 or claudin-5 appeared weaker or disordered, respectively. After six days the subcellular localization of claudin-5 was similar to that of control cells again, but claudin-1 remained relocated from the plasma membrane. To counteract these effects of VEGF-A165, brolucizumab or ranibizumab was added after one day, resulting in recovery of the then lowered CI to normal values within a few hours. However, despite the VEGF antagonist being present, the CI declined again two days later to values that were just slightly higher than without VEGF inhibition during further assessment for several days. At this stage, neither the supernatants nor whole cell extracts from iBREC treated with VEGF-A165 and its antagonists contained significant amounts of free VEGF-A. Treatment of VEGF-A165-challenged iBREC with ranibizumab or brolucizumab normalized expression of claudin-1 and claudin-5, but not completely that of PLVAP. Interestingly, the characteristic VEGF-A165-induced relocalization of claudin-1 from the plasma membrane was reverted within one day by any of the VEGF antagonists, but reappeared despite their presence after further exposure for several days. Taken together, barrier dysfunction induced by VEGF-A165 results from deregulated para- and transcellular flow but the precise nature or magnitude of underlying changes on a molecular level clearly depend on the time of exposure, evolving into a stage of VEGF-A165-independent barrier impairment. These findings also provide a plausible explanation for resistance to treatment with VEGF-A antagonists frequently observed in clinical practice.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany.
| | - Matus Rehak
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany; Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Armin Wolf
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
14
|
Hou X, Du HJ, Zhou J, Hu D, Wang YS, Li X. Role of Junctional Adhesion Molecule-C in the Regulation of Inner Endothelial Blood-Retinal Barrier Function. Front Cell Dev Biol 2021; 9:695657. [PMID: 34164405 PMCID: PMC8215391 DOI: 10.3389/fcell.2021.695657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Although JAM-C is abundantly expressed in the retinae and upregulated in choroidal neovascularization (CNV), it remains thus far poorly understood whether it plays a role in the blood-retinal barrier, which is critical to maintain the normal functions of the eye. Here, we report that JAM-C is highly expressed in retinal capillary endothelial cells (RCECs), and VEGF or PDGF-C treatment induced JAM-C translocation from the cytoplasm to the cytomembrane. Moreover, JAM-C knockdown in RCECs inhibited the adhesion and transmigration of macrophages from wet age-related macular degeneration (wAMD) patients to and through RCECs, whereas JAM-C overexpression in RCECs increased the adhesion and transmigration of macrophages from both wAMD patients and healthy controls. Importantly, the JAM-C overexpression-induced transmigration of macrophages from wAMD patients was abolished by the administration of the protein kinase C (PKC) inhibitor GF109203X. Of note, we found that the serum levels of soluble JAM-C were more than twofold higher in wAMD patients than in healthy controls. Mechanistically, we show that JAM-C overexpression or knockdown in RCECs decreased or increased cytosolic Ca2+ concentrations, respectively. Our findings suggest that the dynamic translocation of JAM-C induced by vasoactive molecules might be one of the mechanisms underlying inner endothelial BRB malfunction, and inhibition of JAM-C or PKC in RCECs may help maintain the normal function of the inner BRB. In addition, increased serum soluble JAM-C levels might serve as a molecular marker for wAMD, and modulating JAM-C activity may have potential therapeutic value for the treatment of BRB malfunction-related ocular diseases.
Collapse
Affiliation(s)
- Xu Hou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong-Jun Du
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Hu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Kim J, Park JY, Kong JS, Lee H, Won JY, Cho DW. Development of 3D Printed Bruch's Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031095. [PMID: 33499245 PMCID: PMC7865340 DOI: 10.3390/ijms22031095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch's membrane. This monolayer is the main component of the outer blood-retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease. Unfortunately, there is presently no cure for these diseases. Clinically implantable RPE for humans is under development, and there is no practical examination platform for drug development. Here, we developed porcine Bruch's membrane-derived bioink (BM-ECM). Compared to conventional laminin, the RPE cells on BM-ECM showed enhanced functionality of RPE. Furthermore, we developed the Bruch's membrane-mimetic substrate (BMS) via the integration of BM-ECM and 3D printing technology, which revealed structure and extracellular matrix components similar to those of natural Bruch's membrane. The developed BMS facilitated the appropriate functions of RPE, including barrier and clearance functions, the secretion of anti-angiogenic growth factors, and enzyme formation for phototransduction. Moreover, it could be used as a basement frame for RPE transplantation. We established BMS using 3D printing technology to grow RPE cells with functions that could be used for an in vitro model and RPE transplantation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| |
Collapse
|
16
|
Busch C, Rehak M, Hollborn M, Wiedemann P, Lang GK, Lang GE, Wolf A, Deissler HL. Type of culture medium determines properties of cultivated retinal endothelial cells: induction of substantial phenotypic conversion by standard DMEM. Heliyon 2021; 7:e06037. [PMID: 33521368 PMCID: PMC7820930 DOI: 10.1016/j.heliyon.2021.e06037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 01/27/2023] Open
Abstract
Contradictory behavior of microvascular retinal endothelial cells (REC) - a reliable in vitro model to study retinal diseases - have recently been reported which might result from cultivating the cells in standard DMEM not optimized for this cell type. Therefore, we studied DMEM's effects on phenotype and behavior of immortalized bovine REC. Cells were cultivated in endothelial cell growth medium (ECGM) until a confluent monolayer was reached and then further kept for 1-4 days in ECGM, DMEM, or mixes thereof all supplemented with 5% fetal bovine serum, endothelial cell growth supplement, 90 μg/ml heparin, and 100 nM hydrocortisone. Within hours of cultivation in DMEM, the cell index - measured to assess the cell layer's barrier function - dropped to ~5% of the initial value and only slowly recovered, not only accompanied by stronger expression of HSP70 mRNA and secretion of interleukin-6, but also by lower expressions of tight junction proteins claudin-5, claudin-1 or of the marker of cell type conversion caveolin-1. Altered subcellular localizations of EC-typic claudin-5, vascular endothelial cadherin and von Willebrand factor were also observed. Taken together, all experiments with (retinal) EC cultivated in common DMEM need to be interpreted very cautiously and should at least include phenotypic validation.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Matus Rehak
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Gerhard K Lang
- Department of Ophthalmology, University of Ulm Hospital, Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University of Ulm Hospital, Ulm, Germany
| | - Armin Wolf
- Department of Ophthalmology, University of Ulm Hospital, Ulm, Germany
| | | |
Collapse
|
17
|
Deissler HL, Sommer K, Lang GK, Lang GE. Transport and fate of aflibercept in VEGF-A 165-challenged retinal endothelial cells. Exp Eye Res 2020; 198:108156. [PMID: 32712182 DOI: 10.1016/j.exer.2020.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Retinal vessels are at least in part involved in clearing of Fc terminus-containing proteins from the vitreous. In vitro, the Fc fusion protein aflibercept is transported through a monolayer of unchallenged immortalized bovine retinal endothelial cells (iBREC), mediated by the neonatal Fc receptor (FcRn), but part of the Fc fusion protein is also degraded. Aflibercept's target VEGF-A not only enhances the permeability of REC by destabilization of tight junctions (TJs) thereby allowing for paracellular flow, it may also lower the intracellular stability of the Fc fusion protein by changing its binding properties to the FcRn. Therefore, we investigated the transport and fate of aflibercept in VEGF-A165-challenged iBREC. All cell culture media were supplemented with 5% fetal bovine serum (FBS) as its absence results in accumulation of aflibercept in iBREC due to deregulated expression of transport proteins. Early after exposure of a confluent iBREC monolayer cultivated on gold electrodes to 5% FBS, the cell index (CI) - assessed as a measure of barrier function, cell viability and cell adhesion - transiently declined but recovered again within a few hours to high values. These values remained stable for several days associated with a strong expression of the TJ-protein claudin-1, indicative of a functional barrier formed by the iBREC monolayer. Transient changes of the plasma membrane localizations of claudin-5 and vascular endothelial cadherin - both important for regulation of paracellular flow - accompanied the transient reduction of the CI not prevented by VEGF-binding proteins. Treatment of iBREC with 50 ng/ml VEGF-A165 for one day resulted in a strong and persistent decline of the CI associated with a low expression level of the TJ-protein claudin-1; reversion to normal values was complete one day after aflibercept's addition at a final concentration of 250 μg/ml. Expressions of other proteins involved in regulation of paracellular flow or transcellular transport were not significantly changed. More aflibercept passed through the monolayer of iBREC cultivated on permeable membrane inserts pretreated with VEGF-A for one day, but this was not affected by a FcRn-inhibiting antibody. Subcellular localization of aflibercept was hardly changed in VEGF-A-exposed iBREC 3 h after its addition to the cells; inhibition of (non)-lysosomal or proteasomal proteases then only weakly affected the amount of internalized aflibercept. iBREC also internalized VEGF-A which was barely detectable as early as 2 h after addition of aflibercept. In contrast, blocking the tyrosine kinase activity of VEGF receptor(s) did not prevent VEGF-A's uptake. Inhibition of cellular proteases strongly increased the amount of internalized VEGF-A in the absence and presence of the Fc fusion protein. We therefore conclude that a FcRn-mediated transport plays a minor role in aflibercept's passage through a leaky barrier of REC. Even early after addition of aflibercept to VEGF-A-exposed iBREC, the levels of free intracellular VEGF-A are low, as aflibercept likely prevents binding of VEGF-A to its receptor. Interestingly, the growth factor's detrimental effects still persist for nearly one day.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.
| | - Katrin Sommer
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Gerhard K Lang
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University Hospital of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| |
Collapse
|