1
|
García-Santisteban R, Linares-Alba MA, Botello-Bárcenas A, Margay P, Soto C, Fonzar-Furtado J, Brooks D, García D, Sánchez GAG. Subconjunctival liposomal sirolimus vs. cyclosporine or tacrolimus as treatment of keratoconjunctivitis sicca in dogs: A double-blind, randomized study. Vet Ophthalmol 2024. [PMID: 38329299 DOI: 10.1111/vop.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE To compare the safety and efficacy of a 100 microgram subconjunctival injection of liposome-encapsulated sirolimus (SCJS) to cyclosporine (CsA) or tacrolimus (CsA/T) for the treatment of keratoconjunctivitis sicca (KCS) in dogs. METHODS Dogs with signs and symptoms of KCS were block-randomized to one of two treatment groups: Biweekly SCJS or conventional treatment (CsA/T). Schirmer tear test 1 (STT-1) scores, conjunctival hyperemia (CH) scores, corneal opacity (CO) scores, and clinical evaluation of potential side effects were recorded every 2 weeks for 14 weeks for both groups. Differences between groups were analyzed using the mixed results ANOVA and U-Mann Whitney tests (p < .05 was considered significant). RESULTS A total of 30 eyes were included in the study, of which 20 eyes completed follow-up. There was no statistically significant interaction between the treatment group and time on STT-1 score (p = .165), and median CH and CO scores showed no statistically significant differences between groups (p = .353 and p = .393, respectively). There were no clinically significant side effects present in any subject at any time. CONCLUSION In this trial, a 1 mg/mL (100 micrograms) SCJS every 2 weeks showed similar safety and efficacy profiles as daily CsA/T in dogs with KS after 14 weeks of treatment. Larger studies should be performed to further assess SCJS as an alternative treatment for KCS.
Collapse
Affiliation(s)
| | | | | | - Paola Margay
- Hospital Veterinario Oftalvet, Mexico City, Mexico
| | - Carlos Soto
- Hospital Veterinario Oftalvet, Mexico City, Mexico
| | | | - Dennis Brooks
- University of Florida, Gainesville, Florida, USA
- Brookseyes LLC, Alachua, Florida, USA
| | | | | |
Collapse
|
2
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
3
|
Brooks D, Linares-Alba MA, Garcia-Santisteban R, Xie E, Gum G, Manza LL, Servitje-Azcarraga L, Santisteban DG, García-Sánchez GA. Pharmacokinetics of Sirolimus in a Novel Liposome Delivery System in Selected Ocular Tissues and Plasma Following a Single Subconjunctival Injection in Dutch Belted Rabbits. J Ocul Pharmacol Ther 2022; 38:424-432. [PMID: 35834571 DOI: 10.1089/jop.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: To determine the pharmacokinetics of a proprietary liposomal sirolimus (LS) formulation in ocular tissues and plasma following a single subconjunctival (SCJ) injection in Dutch belted rabbits (DBR). Analytical methods for detection of LS in plasma, aqueous humor (AH), vitreous humor (VH), retina, combined retina/choroid/retinal pigment epithelium, sclera, and iris/ciliary body were developed to examine samples. Methods: Thirty male DBR were subconjunctivally injected in both eyes with 0.1 mL of LS of 1,000 μg/mL. At selected times post-injection, ocular tissues and whole blood samples were obtained. Sirolimus concentrations were measured using liquid chromatography/tandem mass spectrometry. Results: No LS was detected in serum or AH at any time. All other examined ocular tissues had quantifiable amounts of LS at all times. LS levels were highest in sclera and lowest in VH, suggesting LS followed the supraciliary and suprachoroidal spaces to reach the posterior segment. Vitreous peak of sirolimus levels occurred at 2 h, and the sclera adjacent to the injection peaked at both 2 and 96 h. LS levels in remaining ocular tissues peaked at 6 h and decreased with time, persisting at presumed therapeutic levels on day 22. Conclusions: LS can quickly diffuse into posterior intraocular tissues after SCJ injection without reaching quantifiable levels in AH or serum in DBR. Peak levels occurred in posterior intraocular tissues at 6 h and persisted in all tissues after 3 weeks. SCJ LS in DBR is safe, has a stable pharmacokinetic profile, and should be considered for further study in human trials for autoimmune ophthalmopathies.
Collapse
Affiliation(s)
- Dennis Brooks
- University of Florida, Gainesville, Florida, USA.,Brookseyes LLC, Alachua Florida, Florida, USA
| | | | | | - Enli Xie
- Absorptions Systems California, LLC (ASC), San Diego, California, USA
| | - Glenwood Gum
- Absorptions Systems California, LLC (ASC), San Diego, California, USA
| | - Linda L Manza
- Absorptions Systems California, LLC (ASC), San Diego, California, USA
| | | | - Diego G Santisteban
- Laboratorio Santgar Fórmulas Magistrales de México SA de CV, Mexico City, Mexico
| | | |
Collapse
|
4
|
López-Cano JJ, Sigen A., Andrés-Guerrero V, Tai H, Bravo-Osuna I, Molina-Martínez IT, Wang W, Herrero-Vanrell R. Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics 2021; 13:234. [PMID: 33562265 PMCID: PMC7915560 DOI: 10.3390/pharmaceutics13020234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The present study aims to develop a thermo-responsive-injectable hydrogel (HyG) based on PLGA-PEG-PLGA (PLGA = poly-(DL-lactic acid co-glycolic acid); PEG = polyethylene glycol) to deliver neuroprotective agents to the retina over time. Two PLGA-PEG PLGA copolymers with different PEG:LA:GA ratios (1:1.54:23.1 and 1:2.25:22.5) for HyG-1 and HyG-2 development respectively were synthetized and characterized by different techniques (gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), critical micelle concentration (CMC), gelation and rheological behaviour). According to the physicochemical characterization, HyG-1 was selected for further studies and loaded with anti-inflammatory drugs: dexamethasone (0.2%), and ketorolac (0.5%), alone or in combination with the antioxidants idebenone (1 µM) and D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) (0.002%). In vitro drug release and cytotoxicity studies were performed for the active substances and hydrogels (loaded and drug-free). A cellular model based on oxidative stress was optimized for anti-inflammatory and antioxidant screening of the formulations by using retinal-pigmented epithelial cell line hTERT (RPE-1). The copolymer 1, used to prepare thermo-responsive HyG-1, showed low polydispersity (PDI = 1.22) and a strong gel behaviour at 25% (w/v) in an isotonic buffer solution close to the vitreous temperature (31-34 °C). Sustained release of dexamethasone and ketorolac was achieved between 47 and 62 days, depending on the composition. HyG-1 was well tolerated (84.5 ± 3.2%) in retinal cells, with values near 100% when the anti-inflammatory and antioxidant agents were included. The combination of idebenone and dexamethasone promoted high oxidative protection in the cells exposed to H2O2, with viability values of 86.2 ± 14.7%. Ketorolac and dexamethasone-based formulations ameliorated the production of TNF-α, showing significant results (p ≤ 0.0001). The hydrogels developed in the present study entail a novel biodegradable tool to treat neurodegenerative processes of the retina overtime.
Collapse
Affiliation(s)
- José Javier López-Cano
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Sigen A.
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Vanessa Andrés-Guerrero
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Hongyun Tai
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Irene Bravo-Osuna
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin 4, Ireland; (S.A.); (W.W.)
- Blafar Ltd., Belfield Innovation Park, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Rocío Herrero-Vanrell
- Research Group (UCM 920415), Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Complutense University, 28040 Madrid, Spain; (J.J.L.-C.); (V.A.-G.); (I.B.-O.); (I.T.M.-M.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, 28029 Madrid, Spain
| |
Collapse
|