1
|
Chaudhary P, Lockwood H, Stowell C, Bushong E, Reynaud J, Yang H, Gardiner SK, Wiliams G, Williams I, Ellisman M, Marsh-Armstrong N, Burgoyne C. Retrolaminar Demyelination of Structurally Intact Axons in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 38407858 PMCID: PMC10902877 DOI: 10.1167/iovs.65.2.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/28/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose To determine if structurally intact, retrolaminar optic nerve (RON) axons are demyelinated in nonhuman primate (NHP) experimental glaucoma (EG). Methods Unilateral EG NHPs (n = 3) were perfusion fixed, EG and control eyes were enucleated, and foveal Bruch's membrane opening (FoBMO) 30° sectoral axon counts were estimated. Optic nerve heads were trephined; serial vibratome sections (VSs) were imaged and colocalized to a fundus photograph establishing their FoBMO location. The peripheral neural canal region within n = 5 EG versus control eye VS comparisons was targeted for scanning block-face electron microscopic reconstruction (SBEMR) using micro-computed tomographic reconstructions (µCTRs) of each VS. Posterior laminar beams within each µCTR were segmented, allowing a best-fit posterior laminar surface (PLS) to be colocalized into its respective SBEMR. Within each SBEMR, up to 300 axons were randomly traced until they ended (nonintact) or left the block (intact). For each intact axon, myelin onset was identified and myelin onset distance (MOD) was measured relative to the PLS. For each EG versus control SBEMR comparison, survival analyses compared EG and control MOD. Results MOD calculations were successful in three EG and five control eye SBEMRs. Within each SBEMR comparison, EG versus control eye axon loss was -32.9%, -8.3%, and -15.2% (respectively), and MOD was increased in the EG versus control SBEMR (P < 0.0001 for each EG versus control SBEMR comparison). When data from all three EG eye SBEMRs were compared to all five control eye SBEMRs, MOD was increased within the EG eyes. Conclusions Structurally intact, RON axons are demyelinated in NHP early to moderate EG. Studies to determine their functional status are indicated.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Howard Lockwood
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Eric Bushong
- National Center for Microscopy & Imaging Research, UCSD, La Jolla, California, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Wiliams
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Mark Ellisman
- National Center for Microscopy & Imaging Research, UCSD, La Jolla, California, United States
| | - Nick Marsh-Armstrong
- Department of Ophthalmology, University of California, Davis, California, United States
| | - Claude Burgoyne
- Optic Nerve Head Research Laboratory, Legacy Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
2
|
Keuthan CJ, Schaub JA, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ, Quigley HA. Regional Gene Expression in the Retina, Optic Nerve Head, and Optic Nerve of Mice with Optic Nerve Crush and Experimental Glaucoma. Int J Mol Sci 2023; 24:13719. [PMID: 37762022 PMCID: PMC10531004 DOI: 10.3390/ijms241813719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Collapse
Affiliation(s)
- Casey J. Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Julie A. Schaub
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Meihan Wei
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sarah Quillen
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Elizabeth Kimball
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Thomas V. Johnson
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
- Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| |
Collapse
|
3
|
Keuthan CJ, Schaub J, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ, Quigley HA. Regional Gene Expression in the Retina, Optic Nerve Head, and Optic Nerve of Mice with Experimental Glaucoma and Optic Nerve Crush. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529410. [PMID: 36993314 PMCID: PMC10054954 DOI: 10.1101/2023.02.21.529410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and in human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and on separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Collapse
Affiliation(s)
- Casey J. Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Julie Schaub
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Meihan Wei
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sarah Quillen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Elizabeth Kimball
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Thomas V. Johnson
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Departments of Ophthalmology, Wilmer Eye Institute, Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Oh SE, Kim JH, Shin HJ, Kim SA, Park CK, Park HYL. Angiotensin II-Related Activation of Scleral Fibroblasts and Their Role on Retinal Ganglion Cell Death in Glaucoma. Pharmaceuticals (Basel) 2023; 16:ph16040556. [PMID: 37111313 PMCID: PMC10142824 DOI: 10.3390/ph16040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
We identify the angiotensin II (AngII)-associated changes in the extracellular matrix (ECM) and the biomechanical properties of the sclera after systemic hypotension. Systemic hypotension was induced by administering oral hydrochlorothiazide. AngII receptor levels and ECM components in the sclera and biomechanical properties were evaluated based on the stress–strain relationship after systemic hypotension. The effect of inhibiting the AngII receptor with losartan was determined in the systemic hypotensive animal model and the cultured scleral fibroblasts from this model. The effect of losartan on retinal ganglion cell (RGC) death was evaluated in the retina. Both AngII receptor type I (AT-1R) and type II (AT-2R) increased in the sclera after systemic hypotension. Proteins related to the activation of fibroblasts (transforming growth factor [TGF]-β1 and TGF-β2) indicated that transformation to myofibroblasts (α smooth muscle actin [SMA]), and the major ECM protein (collagen type I) increased in the sclera after systemic hypotension. These changes were associated with stiffening of the sclera in the biomechanical analysis. Administering losartan in the sub-Tenon tissue significantly decreased the expression of AT-1R, αSMA, TGF-β, and collagen type I in the cultured scleral fibroblasts and the sclera of systemic hypotensive rats. The sclera became less stiff after the losartan treatment. A significant increase in the number of RGCs and decrease in glial cell activation was found in the retina after the losartan treatment. These findings suggest that AngII plays a role in scleral fibrosis after systemic hypotension and that inhibiting AngII could modulate the tissue properties of the sclera, resulting in the protection of RGCs.
Collapse
Affiliation(s)
- Si-Eun Oh
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jie-Hyun Kim
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Jong Shin
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong-Ah Kim
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan-Kee Park
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hae-Young Lopilly Park
- Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Madhoun S, Martins MTC, Korneva A, Johnson TV, Kimball E, Quillen S, Pease ME, Edwards M, Quigley H. Effects of experimental glaucoma in Lama1 nmf223 mutant mice. Exp Eye Res 2023; 226:109341. [PMID: 36476399 PMCID: PMC10204621 DOI: 10.1016/j.exer.2022.109341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
To identify changes in response to experimental intraocular pressure (IOP) elevation associated with the laminin α1 nmf223 mutation in mice. Laminin mutant (LM) mice (Lama1nmf223) and C57BL/6J (B6) mice in two age groups each (4-5 months and >1 year) underwent intracameral microbead injections to produce unilaterally elevated IOP. We assessed axonal transport block of immunofluorescently labeled amyloid precursor protein (APP) after 3 days and retinal ganglion cell (RGC) axon loss after 6 weeks. Light, electron and fluorescent microscopy was used to study baseline anatomic differences and effects of 3-day IOP elevation in younger LM mice. In younger mice of both LM and B6 strains, elevated IOP led to increased APP block in the retina, prelaminar optic nerve head (preONH), unmyelinated optic nerve (UON), and myelinated optic nerve (MON). APP blockade not significantly different between younger B6 and LM mouse strains. Older LM mice had greater APP accumulation in both control and glaucoma eyes compared to older B6, however, accumulation was not significantly greater in LM glaucoma eyes compared to LM controls. Axon loss at 6 weeks was 12.2% in younger LM and 18.7% in younger B6 mice (difference between strains, p = 0.22, Mann Whitney test). Untreated LM optic nerve area was lower compared to B6 (nerve area, p < 0.0001, t-test). Aberrant axon bundles, as well as defects, thickening and reduplication of pia mater, were seen in the optic nerves of younger LM mice. Axonal transport blockade significantly differed between old B6 and old LM mice in control and glaucoma eyes, and younger LM mice had abnormal axon paths and lower optic nerve area.
Collapse
Affiliation(s)
- Salaheddine Madhoun
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Arina Korneva
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Quillen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Ellen Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harry Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Chaudhary P, Stowell C, Reynaud J, Gardiner SK, Yang H, Williams G, Williams I, Marsh-Armstrong N, Burgoyne CF. Optic Nerve Head Myelin-Related Protein, GFAP, and Iba1 Alterations in Non-Human Primates With Early to Moderate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 36239974 PMCID: PMC9586137 DOI: 10.1167/iovs.63.11.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program “R.” Results EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes’ MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | | | - Claude F Burgoyne
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
7
|
Kimball EC, Quillen S, Pease ME, Keuthan C, Nagalingam A, Zack DJ, Johnson TV, Quigley HA. Aquaporin 4 is not present in normal porcine and human lamina cribrosa. PLoS One 2022; 17:e0268541. [PMID: 35709078 PMCID: PMC9202842 DOI: 10.1371/journal.pone.0268541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/03/2022] [Indexed: 02/02/2023] Open
Abstract
Aquaporin 4 is absent from astrocytes in the rodent optic nerve head, despite high expression in the retina and myelinated optic nerve. The purpose of this study was to quantify regional aquaporin channel expression in astrocytes of the porcine and human mouse optic nerve (ON). Ocular tissue sections were immunolabeled for aquaporins 1(AQP1), 4(AQP4), and 9(AQP9), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP) and alpha-dystroglycan (αDG) for their presence in retina, lamina, myelin transition zone (MTZ, region just posterior to lamina) and myelinated ON (MON). Semi- quantification of AQP4 labeling & real-time quantitative PCR (qPCR) data were analyzed in retina and ON tissue. Porcine and control human eyes had abundant AQP4 in Müller cells, retinal astrocytes, and myelinated ON (MON), but minimal expression in the lamina cribrosa. AQP1 and AQP9 were present in retina, but not in the lamina. Immunolabeling of GFAP and αDG was similar in lamina, myelin transition zone (MTZ) and MON regions. Semi-quantitative AQP4 labeling was at background level in lamina, increasing in the MTZ, and highest in the MON (lamina vs MTZ, MON; p≤0.05, p≤0.01, respectively). Expression of AQP4 mRNA was minimal in lamina and substantial in MTZ and MON, while GFAP mRNA expression was uniform among the lamina, MTZ, and MON regions. Western blot assay showed AQP4 protein expression in the MON samples, but none was detected in the lamina tissue. The minimal presence of AQP4 in the lamina is a specific regional phenotype of astrocytes in the mammalian optic nerve head.
Collapse
Affiliation(s)
- Elizabeth C. Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sarah Quillen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mary E. Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Casey Keuthan
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Aru Nagalingam
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Donald J. Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thomas V. Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Harry A. Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
9
|
Kim J, Gardiner SK, Ramazzotti A, Karuppanan U, Bruno L, Girkin CA, Downs JC, Fazio MA. Strain by virtual extensometers and video-imaging optical coherence tomography as a repeatable metric for IOP-Induced optic nerve head deformations. Exp Eye Res 2021; 211:108724. [PMID: 34375590 PMCID: PMC8511063 DOI: 10.1016/j.exer.2021.108724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine if in vivo strain response of the Optic Nerve Head (ONH) to IOP elevation visualized using Optical Coherence Tomography (OCT) video imaging and quantified using novel virtual extensometers was able to be provided repeatable measurements of tissue specific deformations. METHODS The ONHs of 5 eyes from 5 non-human primates (NHPs) were imaged by Spectralis OCT. A vertical and a horizontal B-scan of the ONH were continuously recorded for 60 s at 6 Hz (video imaging mode) during IOP elevation from 10 to 30 mmHg. Imaging was repeated over three imaging sessions. The 2D normal strain was computed by template-matching digital image correlation using virtual extensometers. ANOVA F-test (F) was used to compare inter-eye, inter-session, and inter-tissue variability for the prelaminar, Bruch's membrane opening (BMO), lamina cribrosa (LC) and choroidal regions (against variance the error term). F-test of the ratio between inter-eye to inter-session variability was used to test for strain repeatability across imaging sessions (FIS). RESULTS Variability of strain across imaging session (F = 0.7263, p = 0.4855) and scan orientation was not significant (F = 1.053, p = 0.3066). Inter session variability of strain was significantly lower than inter-eye variability (FIS = 22.63, p = 0.0428) and inter-tissue variability (FIS = 99.33 p = 0.00998). After IOP elevation, strain was highest in the choroid (-18.11%, p < 0.001), followed by prelaminar tissue (-11.0%, p < 0.001), LC (-3.79%, p < 0.001), and relative change in BMO diameter (-0.57%, p = 0.704). CONCLUSIONS Virtual extensometers applied to video-OCT were sensitive to the eye-specific and tissue-specific mechanical response of the ONH to IOP and were repeatable across imaging sessions.
Collapse
Affiliation(s)
- Jihee Kim
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Andrea Ramazzotti
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Udayakumar Karuppanan
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, CS, Italy
| | - Christopher A Girkin
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Crawford Downs
- Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; The Viterbi Family Department of Ophthalmology, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Management of toxic optic neuropathy via a combination of Wharton's jelly-derived mesenchymal stem cells with electromagnetic stimulation. Stem Cell Res Ther 2021; 12:518. [PMID: 34579767 PMCID: PMC8477499 DOI: 10.1186/s13287-021-02577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the effect of the combination of Wharton's jelly derived mesenchymal stem cells (WJ-MSC) and high frequency repetitive electromagnetic stimulation (rEMS) in the therapy of toxic optic neuropathies with severe symptoms after the available current therapy modalities which were unsucessful. MATERIAL AND METHODS This prospective, open-label clinical phase-3 study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology between April 2019 and April 2021. Thirty-six eyes of 18 patients with toxic optic neuropathy (TON) were included in the study. Within 1-3 months after the emergency interventions, patients with various degrees of sequela visual disturbances were studied in this clinical trial. The cases were divided into three groups according to similar demographic characteristics. Group 1: Consists of 12 eyes of 12 patients treated with the WJ-MSC and rEMS combination in one eye. Group 2: Consists of 12 eyes of 12 patients treated with only rEMS in one eye. Group 3: Consists of 12 eyes of six patients treated with only WJ-MSC in both eyes. The course was evaluated by comparing the quantitive functional and structural assessment parameters measured before and at the fourth month of applications in each group. RESULTS The mean best corrected visual acuity (BCVA) delta change percentages of the groups can be ranked as: Group 1 (47%) > Group 3 (32%) > Group 2 (21%). The mean fundus perimetry deviation index (FPDI) delta change percentages of the groups can be ranked as: Group 1 (95%) > Group 2 (33%) > Group 3 (27%). The mean ganglion cell complex (GCC) thickness delta change (decrease in thickness) percentages can be ranked as: Group 1 (- 21%) > Group 3 (- 15%) > Group 2 (- 13%). The visual evoked potential (VEP) P100 latency delta change percentages of the groups can be ranked as: Group 1 (- 18%) > Group 3 (- 10%) > Group 2 (- 8%). The P100 amplitude delta change percentages of the groups can be ranked as: Group 1 (105%) > Group 3 (83%) > Group 2 (24%). CONCLUSION Toxic optic neuropathies are emergent pathologies that can result in acute and permanent blindness. After poisoning with toxic substances, progressive apoptosis continues in optic nerve axons and ganglion cells. After the proper first systemic intervention in intensive care clinic, the WJ-MSC and rEMS combination seems very effective in the short-term period in cases with TON. To prevent permanent blindness, a combination of WJ-MSC and rEMS application as soon as possible may increase the chance of success in currently untreatable cases. Trial Registration ClinicalTrials.gov ID: NCT04877067.
Collapse
|
11
|
Al Hussein Al Awamlh S, Wareham LK, Risner ML, Calkins DJ. Insulin Signaling as a Therapeutic Target in Glaucomatous Neurodegeneration. Int J Mol Sci 2021; 22:4672. [PMID: 33925119 PMCID: PMC8124776 DOI: 10.3390/ijms22094672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.
Collapse
Affiliation(s)
- Sara Al Hussein Al Awamlh
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Michael L. Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Calkins DJ. Adaptive responses to neurodegenerative stress in glaucoma. Prog Retin Eye Res 2021; 84:100953. [PMID: 33640464 DOI: 10.1016/j.preteyeres.2021.100953] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Glaucoma causes loss of vision through degeneration of the retinal ganglion cell (RGC) projection to the brain. The disease is characterized by sensitivity to intraocular pressure (IOP) conveyed at the optic nerve head, through which RGC axons pass unmyelinated to form the optic nerve. From this point, a pathogenic triumvirate comprising inflammatory, oxidative, and metabolic stress influence both proximal structures in the retina and distal structures in the optic projection. This review focuses on metabolic stress and how the optic projection may compensate through novel adaptive mechanisms to protect excitatory signaling to the brain. In the retina and proximal nerve head, the unmyelinated RGC axon segment is energy-inefficient, which leads to increased demand for adenosine-5'-triphosphate (ATP) at the risk of vulnerability to Ca2+-related metabolic and oxidative pressure. This vulnerability may underlie the bidirectional nature of progression. However, recent evidence highlights that the optic projection in glaucoma is not passive but rather demonstrates adaptive processes that may push back against neurodegeneration. In the retina, even as synaptic and dendritic pruning ensues, early progression involves enhanced excitability of RGCs. Enhancement involves depolarization of the resting membrane potential and increased response to light, independent of RGC morphological type. This response is axogenic, arising from increased levels and translocation of voltage-gated sodium channels (NaV) in the unmyelinated segment. During this same early period, large-scale networks of gap-junction coupled astrocytes redistribute metabolic resources to the optic projection stressed by elevated IOP to slow loss of axon function. This redistribution may reflect more local remodeling, as astrocyte processes respond to focal metabolic duress by boosting glycogen turnover in response to axonal activity in an effort to promote survival of the healthiest axons. Both enhanced excitability and metabolic redistribution are transient, indicating that the same adaptive mechanisms that apparently serve to slow progression ultimately may be too expensive for the system to sustain over longer periods.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute, Nashville, TN, USA; Vanderbilt Vision Research Center, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 Medical Center North Nashville, Tennessee, 37232, USA.
| |
Collapse
|
13
|
Berdahl JP, Ferguson TJ, Samuelson TW. Periodic normalization of the translaminar pressure gradient prevents glaucomatous damage. Med Hypotheses 2020; 144:110258. [PMID: 33254565 DOI: 10.1016/j.mehy.2020.110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023]
Abstract
The 24-hour intraocular pressure (IOP) rhythm is of interest to clinicians but its overall impact on glaucomatous progression remains unclear. Recent evidence has implicated the translaminar pressure gradient (TLPG), or imbalance between IOP and intracranial pressure, in the development of glaucoma. Evidence suggests that retinal ganglion cell death occurs as a result of decreased axonal transport only after a sustained, elevated TLPG. We hypothesize that periodic normalization of the TLPG prevents glaucomatous damage by enabling temporary resumption of axonal transport. Temporary resumption of axonal transport allows for delivery of critical metabolic cargoes with concomitant removal of metabolic waste which prevents apoptosis of the retinal ganglion cell.
Collapse
|
14
|
Ling YTT, Pease ME, Jefferys JL, Kimball EC, Quigley HA, Nguyen TD. Pressure-Induced Changes in Astrocyte GFAP, Actin, and Nuclear Morphology in Mouse Optic Nerve. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32910133 PMCID: PMC7488631 DOI: 10.1167/iovs.61.11.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To conduct quantitative analysis of astrocytic glial fibrillary acidic protein (GFAP), actin and nuclei distribution in mouse optic nerve (ON) and investigate changes in the measured features after 3 days of ocular hypertension (OHT). Method Serial cross-sections of 3-day microbead-induced OHT and control ONs were fluorescently labelled and imaged using confocal microscope. Eighteen structural features were measured from the acquired images, including GFAP coverage, actin area fraction, process thickness, and aspect ratio of cell nucleus. The measured features were analyzed for variations with axial locations along ON and radial zones transverse to ON, as well as for the correlations with degree of intraocular pressure (IOP) change. Results The most significant changes in structural features after 3-day OHT occurred in the unmyelinated ON region (R1), and the changes were greater with greater IOP elevation. Although the GFAP, actin, axonal, and ON areas all increased in 3-day OHT ONs in R1 (P ≤ 0.004 for all), the area fraction of GFAP actually decreased (P = 0.02), the actin area fraction was stable and individual axon compartments were unchanged in size. Within R1, the number of nuclear clusters increased (P < 0.001), but the mean size of nuclear clusters was smaller (P = 0.02) and the clusters became rounder (P < 0.001). In all cross-sections of control ONs, astrocytic processes were thickest in the rim zone compared with the central and peripheral zones (P ≤ 0.002 for both), whereas the overall process width in R1 decreased after 3 days of OHT (P < 0.001). Conclusions The changes in structure elucidated IOP-generated alterations that underlie astrocyte mechanotranslational responses relevant to glaucoma.
Collapse
Affiliation(s)
- Yik Tung Tracy Ling
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary E. Pease
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Joan L. Jefferys
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth C. Kimball
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Casson RJ, Chidlow G, Wood J. Comment on 'A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice by A. Korneva et al. '(Exp. Eye Res. doi: https://doi.org/ 10.1016/j.exer.2020.108035). Exp Eye Res 2020; 197:108073. [PMID: 32619580 DOI: 10.1016/j.exer.2020.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Robert J Casson
- Ophthalmic Research Laboratory, University of Adelaide, Australia.
| | - Glyn Chidlow
- Ophthalmic Research Laboratory, University of Adelaide, Australia
| | - John Wood
- Ophthalmic Research Laboratory, University of Adelaide, Australia
| |
Collapse
|