1
|
Mok J, Park DY, Han JC. Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis. Biofactors 2024; 50:1220-1235. [PMID: 38818964 PMCID: PMC11627470 DOI: 10.1002/biof.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.
Collapse
Affiliation(s)
- Jeong‐hun Mok
- Department of Medical Device Management and ResearchSAIHST, Sungkyunkwan UniversitySeoulKorea
| | - Do Young Park
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
| | - Jong Chul Han
- Department of Medical Device Management and ResearchSAIHST, Sungkyunkwan UniversitySeoulKorea
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
2
|
Beisel A, Jones G, Glass J, Lee TJ, Töteberg-Harms M, Estes A, Ulrich L, Bollinger K, Sharma S, Sharma A. Comparative analysis of human tear fluid and aqueous humor proteomes. Ocul Surf 2024; 33:16-22. [PMID: 38561100 PMCID: PMC11179983 DOI: 10.1016/j.jtos.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Technological advancements allowing for the analysis of low-volume samples have led to the investigation of human tear fluid and aqueous humor (AH) as potential biomarker sources. However, acquiring AH samples poses significant challenges, making human tear fluid a more accessible alternative. This study aims to compare the protein compositions of these two biofluids to evaluate their suitability for biomarker discovery. METHODS Paired tear and AH samples were collected from 20 patients undergoing cataract surgery. Tear samples were collected using Schirmer strips prior to surgery, and AH samples were collected from the anterior chamber immediately after corneal incision. Proteins were extracted and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 481 proteins were identified in greater than 50% of the tear samples, and 191 proteins were detected in greater than 50% of the AH samples. Of these proteins, 82 were found to be common between the two biofluids, with ALB, LTF, TF, LCN1, and IGKC being the most abundant. CONCLUSION Although tear fluid and the AH are functionally independent and physically separated, many of the proteins detected in AH were also detected in tears. This direct comparison of the proteomic content of tear fluid and AH may aid in further investigation of tear fluid as a source of readily accessible biomarkers for various human diseases.
Collapse
Affiliation(s)
- August Beisel
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Shruti Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Ashok Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Rejas-González R, Montero-Calle A, Valverde A, Salvador NP, Carballés MJC, Ausín-González E, Sánchez-Naves J, Campuzano S, Barderas R, Guzman-Aranguez A. Proteomics Analyses of Small Extracellular Vesicles of Aqueous Humor: Identification and Validation of GAS6 and SPP1 as Glaucoma Markers. Int J Mol Sci 2024; 25:6995. [PMID: 39000104 PMCID: PMC11241616 DOI: 10.3390/ijms25136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
| | - Alejandro Valverde
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Natalia Pastora Salvador
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - María José Crespo Carballés
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | | | - Susana Campuzano
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
4
|
Adigal SS, Kuzhuppilly NIR, Hegde N, V R N, Rizvi A, John RV, George SD, Kartha VB, Bhandary SV, Chidangil S. HPLC-LED-Induced Fluorescence Analysis of Tear Fluids: An Objective Method for Primary Open Angle Glaucoma Diagnosis. Curr Eye Res 2024; 49:260-269. [PMID: 38078692 DOI: 10.1080/02713683.2023.2289862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
PURPOSE The study showcased the application of the lab-assembled HPLC-LED-IF system to analyze proteins in tear fluid samples collected from individuals diagnosed with primary open-angle glaucoma (POAG). METHODS Clinical application of the said technique was evaluated by recording chromatograms of tear fluid samples from control and POAG subjects and by analyzing the protein profile using multivariate analysis. The data analysis methods involved are principal component analysis (PCA), Match/No-Match, and artificial neural network (ANN) based binary classification for disease diagnosis. RESULTS Mahalanobis distance and spectral residual values calculated using a standard calibration set of clinically confirmed POAG samples for the Match/No-Match test gave 86.9% sensitivity and 81.8% specificity. ANN with leaving one out procedure has given 87.1% sensitivity and 81.8% specificity. CONCLUSION The results of the study revealed that the utilization of a 278 nm LED excitation in the HPLC system offers good sensitivity for detecting proteins at low concentrations allowing to obtain reliable protein profiles for the diagnosis of POAG.
Collapse
Affiliation(s)
- Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neetha I R Kuzhuppilly
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nagaraj Hegde
- Arion, The Randstad Netherlands, Eindhoven City, the Netherlands
| | - Nidheesh V R
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alisha Rizvi
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sajan D George
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vasudevan B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Hoppe C, Gregory-Ksander M. The Role of Complement Dysregulation in Glaucoma. Int J Mol Sci 2024; 25:2307. [PMID: 38396986 PMCID: PMC10888626 DOI: 10.3390/ijms25042307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a progressive neurodegenerative disease characterized by damage to the optic nerve that results in irreversible vision loss. While the exact pathology of glaucoma is not well understood, emerging evidence suggests that dysregulation of the complement system, a key component of innate immunity, plays a crucial role. In glaucoma, dysregulation of the complement cascade and impaired regulation of complement factors contribute to chronic inflammation and neurodegeneration. Complement components such as C1Q, C3, and the membrane attack complex have been implicated in glaucomatous neuroinflammation and retinal ganglion cell death. This review will provide a summary of human and experimental studies that document the dysregulation of the complement system observed in glaucoma patients and animal models of glaucoma driving chronic inflammation and neurodegeneration. Understanding how complement-mediated damage contributes to glaucoma will provide opportunities for new therapies.
Collapse
Affiliation(s)
- Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
6
|
Shi Y, Chen J, Cai L, Zhang X, Chen Z, Yang J, Jiang Y, Lu Y. Uncovering the Hidden World of Aqueous Humor Proteins for Discovery of Biomarkers for Marfan Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303161. [PMID: 38088571 PMCID: PMC10853735 DOI: 10.1002/advs.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Ectopia lentis is a hallmark of Marfan syndrome (MFS), a genetic connective tissue disorder affecting 1/5000 to 1/10 000 individuals worldwide. Early detection in ophthalmology clinics and timely intervention of cardiovascular complications can be lifesaving. In this study, a modified proteomics workflow with liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based data-independent acquisition (DIA) and field asymmetric ion mobility spectrometry (FAIMS) to profile the proteomes of aqueous humor (AH) and lens tissue from MFS children with ectopia lentis is utilized. Over 2300 and 2938 comparable proteins are identified in AH and the lens capsule, respectively. Functional enrichment analyses uncovered dysregulation of complement and coagulation-related pathways, collagen binding, and cell adhesion in MFS. Through weighted correlation network analysis (WGCNA) and machine learning, distinct modules associated with clinical traits are constructed and a unique biomarker panel (Q14376, Q99972, P02760, Q07507; gene names: GALE, MYOC, AMBP, DPT) is defined. These biomarkers are further validated using advanced parallel reaction monitoring (PRM) in an independent patient cohort. The results provide novel insights into the proteome characterization of ectopia lentis and offer a promising approach for developing a valuable biomarker panel to aid in the early diagnosis of Marfan syndrome via AH proteome.
Collapse
Affiliation(s)
- Yumeng Shi
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Jiahui Chen
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Lei Cai
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Xueling Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Zexu Chen
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Jin Yang
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye and ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Key Laboratory of MyopiaChinese Academy of Medical SciencesShanghai200031China
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghai200031China
| |
Collapse
|
7
|
Lee TJ, Goyal A, Jones G, Glass J, Doshi V, Bollinger K, Ulrich L, Ahmed S, Kodeboyina SK, Estes A, Töteberg-Harms M, Zhi W, Sharma S, Sharma A. AHP DB: a reference database of proteins in the human aqueous humor. Database (Oxford) 2024; 2024:baae001. [PMID: 38284936 PMCID: PMC10878049 DOI: 10.1093/database/baae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
The aqueous humor (AH) is a low-viscosity biofluid that continuously circulates from the posterior chamber to the anterior chamber of the eye. Recent advances in high-resolution mass-spectrometry workflows have facilitated the study of proteomic content in small-volume biofluids like AH, highlighting the potential clinical implications of the AH proteome. Nevertheless, in-depth investigations into the role of AH proteins in ocular diseases have encountered challenges due to limited accessibility to these workflows, difficulties in large-scale AH sample collection and the absence of a reference AH proteomic database. In response to these obstacles, and to promote further research on the involvement of AH proteins in ocular physiology and pathology, we have developed the web-based Aqueous Humor Proteomics Database (AHP DB). The current version of AHP DB contains proteomic data from 307 human AH samples, which were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The database offers comprehensive information on 1683 proteins identified in the AH samples. Furthermore, relevant clinical data are provided for each analyzed sample. Researchers also have the option to download these datasets individually for offline use, rendering it a valuable resource for the scientific community. Database URL: https://ahp.augusta.edu/.
Collapse
Affiliation(s)
- Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Arnav Goyal
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Vishal Doshi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Mass General Brigham, 399 Revolution Drive, Somerville, MA 02145, USA
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Xiang H, Zhang B, Wang Y, Xu N, Zhang F, Luo R, Ji M, Ding C. Region-resolved multi-omics of the mouse eye. Cell Rep 2023; 42:112121. [PMID: 36790928 DOI: 10.1016/j.celrep.2023.112121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/19/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The eye is a complex organ consisting of multiple compartments with unique and specialized properties, and small disturbances in one eye region can result in impaired vision and blindness. Although there have been advancements in ocular research, the hierarchical molecular network in region-wide resolution, indicating the division of labor and crosstalk among different eye regions, is not yet comprehensively illuminated. Here, we present an atlas of region-resolved proteome and lipidome of mouse eye. Multiphoton microscopy-guided laser microdissection combined with in-depth label-free proteomics identifies 13,536 proteins across various mouse eye regions. Further integrative analysis of spectral imaging, label-free proteome, and imaging mass spectrometry of the lipidome and phosphoproteome reveals distinctive molecular features, including proteins and lipids of various anatomical mouse eye regions. These deposited datasets and our open proteome server integrating all information provide a valuable resource for future functional and mechanistic studies of mouse eye and ocular disease.
Collapse
Affiliation(s)
- Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Sun Y, Wirta D, Murahashi W, Mathur V, Sankaranarayanan S, Taylor LK, Yednock T, Fong DS, Goldberg JL. Safety and Target Engagement of C1q Inhibitor ANX007 in Neurodegenerative Eye Disease: Results from Phase 1 Studies in Glaucoma. OPHTHALMOLOGY SCIENCE 2023; 3:100290. [PMID: 37124168 PMCID: PMC10130689 DOI: 10.1016/j.xops.2023.100290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Purpose Complement C1q, the initiating molecule of the classical complement cascade, is involved in synapse elimination and neuronal loss in neurodegenerative diseases including glaucoma. Here we report an evaluation of the safety, tolerability, and ocular pharmacokinetics (PK) and pharmacodynamics of intravitreal (IVT) injections of ANX007, an anti-C1q monoclonal antibody fragment that blocks activation of the classical complement cascade. Design An open-label, single-dose-escalation phase Ia study followed by a double-masked, randomized, sham-controlled, repeat-injection phase Ib study. Participants A total of 26 patients with primary open-angle glaucoma. Methods Nine patients with primary open-angle glaucoma (mean Humphrey visual field deviation between -3 and -18 decibels [dB]) were enrolled in phase Ia and received single doses of ANX007 (1.0 mg, n = 3; 2.5 mg, n = 3; or 5.0 mg, n = 3). Seventeen patients (mean Humphrey visual field deviation between -3 and -24 dB) were enrolled in phase Ib and randomized to 2 monthly doses of ANX007 (sham, n = 6; 2.5 mg ANX007, n = 6; or 5 mg ANX007, n = 5). Main Outcome Measures Safety and tolerability (including laboratory evaluation of urinalysis, complete blood count, and serum chemistries), ANX007 PK, target engagement, and immunogenicity. Results The mean age overall was 70 years in phase Ia and 68 years in phase Ib. In both studies, no serious adverse events were observed, no non-ocular treatment-emergent adverse events (TEAEs) attributable to study drug were reported, and ocular TEAEs were mild. Intraocular pressure returned to normal levels for all patients within 45 minutes of IVT injection. No clinically significant deviations in laboratory results were observed. In the phase Ib study, C1q in the aqueous humor was reduced to undetectable levels in both the 2.5 mg and 5 mg cohorts 4 weeks after the first ANX007 dose. Conclusions In these studies, single and repeat IVT ANX007 injections were well tolerated and demonstrated full target engagement 4 weeks after dosing with both low and high doses, supporting monthly or less-frequent dosing. Further investigation in neurodegenerative ocular diseases is warranted. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Yang Sun
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
| | - David Wirta
- Eye Research Foundation, Newport Beach, California
| | | | | | | | | | | | | | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California
- Correspondence: Jeffrey L. Goldberg, MD, PhD, Byers Eye Institute at Stanford, 2452 Watson Ct, Palo Alto, CA 94025.
| |
Collapse
|
10
|
Sharif N. Neuroaxonal and cellular damage/protection by prostanoid receptor ligands, fatty acid derivatives and associated enzyme inhibitors. Neural Regen Res 2023; 18:5-17. [PMID: 35799502 PMCID: PMC9241399 DOI: 10.4103/1673-5374.343887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical, mechanical, noxious and other stimuli. Prostaglandin D2, prostaglandin E2, prostaglandin F2α, prostaglandin I2 and thromboxane-A2 interact with five major receptors (and their sub-types) to elicit specific downstream cellular and tissue actions. In general, prostaglandins have been associated with pain, inflammation, and edema when they are present at high local concentrations and involved on a chronic basis. However, in acute settings, certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation, providing cellular protection, regulating sleep, and enhancing blood flow, to lowering intraocular pressure to prevent the development of glaucoma, a blinding disease. Several classes of prostaglandins are implicated (or are considered beneficial) in certain central nervous system dysfunctions (e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases; amyotrophic lateral sclerosis and multiple sclerosis; stroke, traumatic brain injuries and pain) and in ocular disorders (e.g., ocular hypertension and glaucoma; allergy and inflammation; edematous retinal disorders). This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease, and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists, polyunsaturated fatty acids, and cyclooxygenase inhibitors.
Collapse
|
11
|
Geoffrion D, Koenekoop RK, Harissi-Dagher M. Probing mechanisms and improving management of glaucoma following Boston keratoprosthesis surgery. Acta Ophthalmol 2022; 100 Suppl 274:3-17. [PMID: 36482042 DOI: 10.1111/aos.15292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ENGLISH SUMMARY Corneal blindness is a leading cause of visual impairment worldwide. The most common treatment is to replace the diseased cornea by standard corneal transplantation. In eyes at high risk of graft failure, the Boston keratoprosthesis type 1 (KPro) can be used to restore vision and is currently the most frequently used artificial cornea in the world. However, glaucoma is a well-known complication of KPro surgery and is the most important threat to vision in KPro-implanted eyes (paper I). This chronic disease is influenced by elevated intraocular pressure (IOP) and damages the optic nerve, leading to progressive vision loss. In KPro patients, glaucoma is highly prevalent and extremely challenging to manage, yet its exact cause remains unknown. The overall purpose of this PhD Thesis (Geoffrion, 2021) was to better understand the mechanisms and how to improve management of glaucoma after KPro implantation. The approaches used in this thesis included investigating one of the largest KPro patient cohorts in North America, with a total of 157 operated patients at that time, as well as studying KPro surgery and outcomes in mice. The first objective was to identify risk factors for glaucoma development and progression after KPro implantation (paper II). Multivariate logistic regression revealed that high preoperative IOP signals a higher risk for both glaucoma development and progression. Stromal and endothelial corneal disorders were less associated with glaucoma progression, while autoimmune and ocular surface diseases precipitated glaucoma development. Second, there is no objective evidence that indicates the best order for glaucoma surgeries and KPro implantation. By comparing medical and surgical management in KPro eyes with either preexisting or de novo glaucoma (paper III), we showed that glaucoma surgery may be performed before or at the time of KPro in eyes with preexisting glaucoma to limit progression without increasing complications. In eyes with de novo glaucoma, glaucoma surgery did not increase complications compared with medications. Third, among glaucoma surgery interventions, the two most frequently implanted glaucoma drainage devices were compared in KPro patients (paper IV). Compared with the Ahmed glaucoma valve, the Baerveldt glaucoma implant was associated with lower failure rates, without increased postoperative complications. Fourth, even with aggressive management, many KPro patients suffer from progressive optic nerve damage, sometimes despite normal IOP. Inflammatory cytokines play an important role in glaucomatous optic neuropathy, but their role in KPro-associated glaucoma is still unknown. By analysing tear fluid of KPro patients by multiplex bead immunoassay (paper V), we identified that cytokines TNF-a, IL-1b, FGF-basic and IFN-g were elevated in KPro patients with glaucoma compared to those without. These cytokines correlated with optic nerve excavation and IOP. For the first time in humans, these results concorded with the elevations of TNF-a and IL-1b documented in the mouse KPro model. Ocular surface inflammation may thus reflect the inflammatory processes that perpetuate glaucoma damage years after KPro surgery. Fifth, we determined that miniaturized mouse KPro implantation requires extensive practice to be used as a reproducible model of glaucoma post-KPro (paper VI). KPro animal models with larger eyes and a full-thickness, 360-degree corneal excision should be prioritized to best validate human outcomes. In conclusion, glaucoma in KPro eyes is a long-lasting and multifactorial process. Most probable mechanisms combine IOP-independent inflammation mediated by TNF-a and IL-1b that prolong glaucoma damage, together with post-surgical angle closure elevating the IOP. Altogether, our results inform glaucoma risk profiling of transplant recipients, improvement of surgical management of KPro patients with glaucoma and development of targeted treatments to minimize glaucomatous damage after KPro. Ultimately, this work has the potential to preserve the vision of thousands of patients who undergo KPro surgery every year worldwide and to provide insight for the role of inflammation in other diseases involving neuronal damage. RÉSUMÉ (FRENCH SUMMARY): La cécité cornéenne est l'une des causes les plus importantes de déficience visuelle dans le monde. Le traitement usuel est de remplacer la cornée malade par une greffe de cornée traditionnelle. Dans les yeux à haut risque d'échec de greffe, la kératoprothèse de Boston de type 1 (KPro) peut rétablir la vision et est la cornée artificielle la plus utilisée au monde. Cependant, le glaucome est une complication importante de la KPro (papier I). Cette maladie chronique est influencée par une pression intraoculaire (PIO) élevée et endommage le nerf optique, menant à une perte de vision. Chez les patients avec KPro, le glaucome est fréquent et difficile à contrôler, mais sa cause exacte demeure inconnue. L'objectif principal de cette thèse est de découvrir les mécanismes et d'optimiser la prise en charge du glaucome après l'implantation de la KPro. Pour ce faire, nous avons investigué l'une des plus grandes cohortes de patients KPro en Amérique du Nord avec un total de 157 patients, ainsi qu'un groupe de souris ayant reçu une implantation de kératoprothèse. Le premier but était d'identifier les facteurs de risque pour le développement et la progression du glaucome après la KPro (papier II). Par régression logistique multivariée, nous avons démontré qu'une PIO préopératoire élevée mène à un plus grand risque de développement et de progression du glaucome. Les maladies cornéennes stromales ou endothéliales sont moins associées à une progression, alors que les maladies autoimmunes ou de la surface oculaire précipitent le développement du glaucome. Deuxièmement, il n'existe aucune donnée objective pour indiquer le meilleur ordre des chirurgies de glaucome et de KPro. En comparant les traitements médicaux et chirurgicaux des yeux KPro avec glaucome (papier III), nous avons démontré que les chirurgies de glaucome peuvent limiter la progression en étant effectuées avant ou pendant l'implantation de KPro dans les yeux avec glaucome préexistant, sans augmenter les complications. Dans le glaucome de novo, les chirurgies de glaucome n'augmentent pas les complications en comparaison aux médicaments. Troisièmement, les deux implants de glaucome les plus communs ont été étudiés chez les patients KPro (papier IV). Comparé à la valve Ahmed, l'implant Baerveldt est associé à des taux d'échec plus bas, sans augmentation des complications. Quatrièmement, même avec une prise en charge agressive, plusieurs patients KPro souffrent de glaucome qui progresse, parfois sans PIO élevée. Les cytokines inflammatoires jouent un rôle dans la pathophysiologie du glaucome, mais leur rôle dans le glaucome associé à la KPro est inconnu. En analysant les larmes de patients KPro (papier V), nous avons identifié que les cytokines TNF-a, IL-1b, FGF-basic et IFN-g sont élevées chez les patients KPro avec glaucome comparé à ceux sans glaucome. Ces cytokines corrèlent avec l'excavation du nerf optique et la PIO. Pour la première fois chez les humains, ces résultats concordent avec les niveaux élevés de TNF-a et IL-1b documentés dans le modèle murin de KPro. L'inflammation de la surface oculaire pourrait donc refléter les processus inflammatoires qui perpétuent le dommage glaucomateux. Cinquièmement, nous avons déterminé que l'implantation de la KPro miniature chez la souris requiert beaucoup de pratique pour être utilisé comme modèle de glaucome post-KPro (papier VI). Des modèles animaux avec des yeux plus larges et une excision cornéenne de pleine épaisseur sur 360 degrés devraient être priorisés pour valider les résultats chez l'humain. En conclusion, le glaucome associé à la KPro est un processus multifactoriel qui persiste à long terme. Les mécanismes probables combinent l'inflammation médiée par TNF-a et IL-1b et une fermeture de l'angle qui augmente la PIO. Nos résultats contribuent à établir les facteurs de risque de glaucome pour les receveurs de KPro, à améliorer leur prise en charge et à développer des thérapies ciblées. Ce travail a le potentiel de préserver la vision de milliers de patients recevant une KPro chaque année dans le monde et d'aider à mieux comprendre le rôle de l'inflammation dans d'autres maladies avec atteinte neuronale.
Collapse
Affiliation(s)
- Dominique Geoffrion
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert K Koenekoop
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mona Harissi-Dagher
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Reinehr S, Mueller-Buehl AM, Tsai T, Joachim SC. Specific Biomarkers in the Aqueous Humour of Glaucoma Patients. Klin Monbl Augenheilkd 2022; 239:169-176. [PMID: 35211939 DOI: 10.1055/a-1690-7468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glaucoma, a multifactorial neurodegenerative disease, is the second most common cause of blindness. Since early diagnosis facilitates timely treatment, it is therefore essential to identify appropriate markers. In the future, so-called biomarkers could be helpful in early detection and follow-up. In glaucoma, these parameters could be obtained in the aqueous humour. Altered antibodies, proteins, microRNA (miRNA) and trace element levels have already been identified. This review provides insight into possible changes in the aqueous humour of patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) or pseudoexfoliation glaucoma (PEXG). Studies on antibody changes in POAG patients identified an upregulation of immune system associated antibodies such as heat shock protein (HSP) 27. HSP27 was also upregulated in PEXG patients but decreased in NTG. In POAG and PEXG samples, the levels of certain proteins, including interleukins and endothelin-1, were elevated. The vasoconstrictor endothelin-1 may play a role in regulating intraocular pressure. By contrast, proteins playing a role in the response to oxidative stress were downregulated. In NTG patients, proteins responsible for the elimination of toxic by-products from the respiratory chain were downregulated. In addition, the aqueous humour of POAG and PEXG patients contained several miRNAs that have been linked to tissue development, neurological disease and cellular organisation. Other miRNAs regulated in glaucoma play a role in extracellular matrix remodelling and thus may affect drainage resistance in the trabecular meshwork. It is also interesting to note that the aqueous humour of glaucoma patients showed changes in the levels of trace elements such as zinc and selenium. The elevated zinc levels could be responsible for the imbalance of intraocular matrix metalloproteinases and thus for increased intraocular pressure. All these studies demonstrate the complex changes in aqueous humour in glaucoma. Some of these biomarkers may be useful in the future for early diagnosis of the disease.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | | - Teresa Tsai
- Experimental Eye Research Institute, Ruhr-Universität Bochum, Deutschland
| | | |
Collapse
|
13
|
Choi JA, Maddala R, Karnam S, Skiba NP, Vann R, Challa P, Rao PV. Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med 2022; 26:2063-2075. [PMID: 35170203 PMCID: PMC8980963 DOI: 10.1111/jcmm.17229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open‐angle glaucoma patients compared to non‐glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti‐apoptotic and anti‐TGF‐β activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF‐β2‐induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride‐induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF‐α‐induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF‐β induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Jin A Choi
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robin Vann
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
14
|
Proteome alterations in the aqueous humor reflect structural and functional phenotypes in patients with advanced normal-tension glaucoma. Sci Rep 2022; 12:1221. [PMID: 35075201 PMCID: PMC8786875 DOI: 10.1038/s41598-022-05273-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Previous reports have shown possible association between altered protein levels in aqueous humor (AH) and normal-tension glaucoma (NTG), but the underlying pathogenetic mechanism as well as specific molecular biomarkers for NTG remains still elusive. Here, we aimed to identify novel biomarkers for advanced NTG by analyzing the proteome of patient-derived AH and their correlation with various functional and structural parameters from the visual field test (VF), optical coherence tomography (OCT), and OCT angiography (OCTA). We determined differentially expressed proteins (DEPs) of the AH of patients with advanced NTG (n = 20) using label-free quantitative (LFQ) proteomics with pooled samples and data-independent acquisition (DIA) analysis with individual samples, and the roles of AH DEPs in biological pathways were evaluated using bioinformatics. We identified 603 proteins in the AH of patients with advanced NTG, and 61 of them were selected as DEPs via global proteome LFQ profiling. Individual DIA analyses identified a total of 12 DEPs as biomarker candidates, seven of which were upregulated, and five were downregulated. Gene ontology enrichment analysis revealed that those DEPs were mainly involved in the immune response. Moreover, IGFBP2, ENO1, C7, B2M, AMBP, DSP, and DCD showed a significant correlation with the mean deviation of VF and with peripapillary and macular parameters from OCT and OCTA. The present study provides possible molecular biomarkers for the diagnosis of advanced NTG.
Collapse
|
15
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Yun S, Lee D, Kang S, Kim DW, Kim Y, Cho JY, Seo K. Proteomic analysis of aqueous humor in canine primary angle-closure glaucoma in American Cocker Spaniel dogs. Vet Ophthalmol 2021; 24:520-532. [PMID: 34558166 DOI: 10.1111/vop.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To analyze proteomic profiles of the aqueous humor (AH) of canines with primary angle-closure glaucoma (PACG) and identify associated protein alterations. ANIMALS STUDIED Six American Cocker Spaniels with PACG and six American Cocker Spaniels without ocular diseases. METHODS Aqueous humor samples were collected from six American Cocker Spaniels with PACG at Seoul National University, VMTH, and six healthy Cocker Spaniels without ocular disease at Irion Animal Hospital. For the PACG group, AH samples were obtained by anterior chamber paracentesis prior to glaucoma treatment. For the AH control group, AH samples were collected from patients anesthetized for other reasons. Total AH protein concentration was determined by the bicinchoninic acid (BCA) assay. AH protein samples were quantified by liquid chromatography-mass spectrometry (LC-MS/MS). Raw MS spectra were processed using MaxQuant software 30, and the Gene Ontology (GO) enrichment analysis was performed using ClueGO. RESULTS The AH protein concentration in the PACG group (10.49 ± 17.98 µg/µl) was significantly higher than that of the control group (0.45 ± 0.11 µg/µl; p < .05). A total of 758 proteins were identified in the AH. Several proteins both significantly increased (n = 69) and decreased (n = 252) in the PACG group compared to those in the control group. GO enrichment analysis showed that the "response to wounding," "negative regulation of endopeptidase activity," and "cell growth" pathways were the most enriched terms in the PACG group compared to the control group. The top 5 proteins that were significantly increased in the AH of the PACG group were secreted phosphoprotein 1 (SPP1), peptidoglycan recognition proteins 2 (PGLYRP2), tyrosine 3-monooxygenase (YWHAE), maltase-glucoamylase (MGAM), and vimentin (VIM). CONCLUSIONS Gene Ontology enrichment analysis using the proteomic data showed that proteins and pathways related to inflammation were significantly upregulated in the various stage of PACG. Proteomic analysis of the AH from the PACG may provide valuable insights into PACG pathogenesis.
Collapse
Affiliation(s)
- Seongjin Yun
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Irion animal hospital, Seoul, Korea
| | - Dabin Lee
- Department of Veterinary Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Dong Wook Kim
- Department of Veterinary Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Youngsam Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Cueto AFV, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto LFV, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. BIOLOGY 2021; 10:763. [PMID: 34439995 PMCID: PMC8389649 DOI: 10.3390/biology10080763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Luis Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain; (L.Á.); (A.Á.-B.); (E.A.)
| |
Collapse
|
18
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Geoffrion D, Robert MC, Di Polo A, Koenekoop RK, Agoumi Y, Harissi-Dagher M. Tear Film Cytokine Profile of Patients With the Boston Keratoprosthesis Type 1: Comparing Patients With and Without Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 33856415 PMCID: PMC8054627 DOI: 10.1167/iovs.62.4.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Inflammatory cytokines are involved in glaucoma pathogenesis. The purpose is to compare cytokine levels in the tear film of Boston keratoprosthesis (KPro) patients with and without glaucoma, relative to controls, and correlate levels with clinical parameters. Methods This cross-sectional study enrolled 58 eyes (58 patients): 41 KPro eyes with glaucoma, 7 KPro eyes without glaucoma, and 10 healthy controls. Twenty-seven cytokines were measured by multiplex bead immunoassay. Intraocular pressure (IOP), cup-to-disk ratio (CDR), retinal nerve fiber layer, visual acuity, topical medications, and angle closure were assessed in all KPro eyes. Cytokine levels between groups were analyzed by nonparametric tests, and correlations with clinical parameters by Spearman's test. Results Levels of TNF-ɑ, IL-1β, FGF-basic, and IFN-ɣ were significantly higher in KPro with glaucoma compared to KPro without (P = 0.020; 0.008; 0.043; 0.018, respectively). KPro groups had similar characteristics and topical antibiotic/steroid regimen. Levels of IL-1Ra, IL-15, VEGF, and RANTES were significantly higher in KPro with glaucoma compared to controls (P < 0.001; = 0.034; < 0.001; = 0.001, respectively). IL-1β and IFN-ɣ levels were positively correlated with CDR (r = 0.309, P = 0.039 and r = 0.452, P = 0.006, respectively) and IOP (r = 0.292, P = 0.047 and r = 0.368, P = 0.023, respectively). TNF-α and FGF-basic levels were positively correlated with CDR (r = 0.348, P = 0.022 and r = 0.344, P = 0.021, respectively). Conclusions TNF-α, IL-1β, FGF-basic, IFN-ɣ are elevated in tears of KPro patients with glaucoma and correlate with CDR and IOP. These results show, for the first time in humans, concordance with documented elevations of TNF-α and IL-1β in the murine KPro model. Ocular surface inflammation may reflect inflammatory processes of KPro glaucoma.
Collapse
Affiliation(s)
- Dominique Geoffrion
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marie-Claude Robert
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Adriana Di Polo
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Robert K Koenekoop
- Departments of Experimental Surgery, Paediatric Surgery, Adult Ophthalmology, and Human Genetics, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Younes Agoumi
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mona Harissi-Dagher
- Department of Ophthalmology, Université de Montréal, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Hubens WHG, Beckers HJM, Gorgels TGMF, Webers CAB. Increased ratios of complement factors C3a to C3 in aqueous humor and serum mark glaucoma progression. Exp Eye Res 2021; 204:108460. [PMID: 33493474 DOI: 10.1016/j.exer.2021.108460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION We recently performed a combined analysis of publicly available proteomic studies of aqueous humor (AH) of patients with primary open angle glaucoma (POAG). This analysis revealed changes in complement protein concentrations in the AH of progressive POAG patients, which suggested that the complement system may play a role in POAG progression. As the proteomic studies could not provide information on the activity of the complement system, we addressed this question in the current study. METHODS Blood serum and AH were obtained from 30 patients: 10 progressive POAG, 10 stable POAG and, as controls, 10 cataract patients. Glaucoma patients with a visual field Mean Deviation (MD) change of at least 1.0 dB/year were considered progressive; a MD change of less than 0.5 dB/year was considered stable. The ratio between the levels of complement factors C3a and C3 was used as indicator for activation of the complement cascade. The factors were measured with commercially available ELISA kits. RESULTS AH levels of complement factors C3 and C3a did not significantly differ between groups. In serum, complement factor C3 did not differ between groups whereas C3a was significantly elevated in progressive POAG patients compared to controls (p < 0.05). The resulting complement C3a/C3 ratio was significantly higher in progressive POAG patients in both AH (p < 0.05) and serum (p < 0.01), and this ratio significantly correlated between the two body fluids (p < 0.001). Furthermore, there was a strong correlation between disease progression and C3a/C3 activation ratio both in AH (p < 0.01) and in serum (p < 0.001). The higher the complement C3a/C3 ratio, the faster the disease progression. CONCLUSION Significant increases in AH and serum complement C3a/C3 ratios were observed in progressive POAG patients but not in stable POAG patients. Furthermore, the complement C3a/C3 ratio correlated strongly with the rate of disease progression in both AH and serum. These findings suggest that activation of the complement system plays a role in glaucoma progression and that progressive glaucoma patients may have systemic changes in complement activation.
Collapse
Affiliation(s)
- W H G Hubens
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands; Research School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - H J M Beckers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - T G M F Gorgels
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| | - C A B Webers
- University Eye Clinic Maastricht, Maastricht Medical Center, Maastricht, the Netherlands
| |
Collapse
|
21
|
Aqueous humor proteome of primary open angle glaucoma: A combined dataset of mass spectrometry studies. Data Brief 2020; 32:106327. [PMID: 33005708 PMCID: PMC7519237 DOI: 10.1016/j.dib.2020.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
Analysis of the proteins of the aqueous humor can help to elucidate the complex pathogenesis of primary open angle glaucoma. Thanks to advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) it is now possible to identify hundreds of proteins in individual aqueous humor samples without the need to pool samples. We performed a systematic literature search to find publications that performed LC-MS/MS on aqueous humor samples of glaucoma patients and of non-glaucomatous controls. Of the seven publications that we found, we obtained the raw data of three publications. These three studies used glaucoma patients that were clinically similar (i.e. undergoing glaucoma filtration surgery) which prompted us to reanalyse and combine their data. Raw data of each study were analysed separately with the latest version of MaxQuant (version v1.6.11.0). Outcome files were exported to Microsoft Excel. Samples belonging to the same patient were averaged to obtain peptide expression values per individual. We compared the overlap of identified proteins using the VLOOKUP function of Excel and a publicly available Venn diagram software. For the peptide sequences that can belong to multiple proteins (usually of the same protein family), we initially included all possibly identified proteins. This ensured that we would not miss a potential overlap between the studies due to differences in identified peptide counts. Next, of those peptides of which we compared multiple proteins, only one unique protein was included in our analysis i.e. either the protein overlapping between studies or in case of no overlap, the protein that had the highest identified peptide count. This yielded 639 unique proteins detected in aqueous humor of either glaucoma patients or non-glaucomatous controls. In our manuscript entitled “The aqueous humor proteome of primary open angle glaucoma: An extensive review” [1], we further analysed this dataset. The dataset was exported to Perseus (version 1.6.5.0). We removed contaminants and filtered for proteins detected with high confidence, i.e. in more than 70% of the samples of at least one study. This yielded 248 proteins of which we compared the expression in glaucoma patients against control patients. Gene ontology enrichment analysis and pathway analysis was used to interpret the results. The unfiltered dataset reported in this data article and the approach reported here to reanalyse and combine raw data of different studies can be applied by other glaucoma researchers to gain more insight in the pathogenesis of glaucoma.
Collapse
|