1
|
Liu N, Yin Z, Wang M, Kui H, Yuan Z, Tian Y, Liu C, Huang J. Pharmacodynamic and targeted amino acid metabolomics researches on the improvement of diabetic retinopathy with Fufang Xueshuantong component compatibility. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124194. [PMID: 38924945 DOI: 10.1016/j.jchromb.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The Fufang Xueshuantong capsule (FXT) has significant preventive and therapeutic effects on diabetic retinopathy(DR), but the compatibility of its active components remains to be thoroughly explored. In this study, a zebrafish diabetic retinopathy model was established using high-mixed sugars, and the optimal ratios of notoginseng total saponins, total salvianolic acid, astragaloside, and harpagide were selected through orthogonal experiments. Furthermore, we used UPLC-QqQ/MS to detect the changes in amino acid content of DR zebrafish tissues after administration of FXT and its compatible formula to analyze the effects of FXT and its compatible formula on amino acid metabolites. The results showed that the final compatibility ratios of the components were 8: 5: 1: 6.6 by comprehensive evaluation of the indicators. FXT and its compatibility formula had beneficial effects on retinal vasodilatation, lipid accumulation in the liver, total glucose, and VEGF levels in DR zebrafish, and all of them could call back some amino acid levels in DR zebrafish. In this research, we determined the compatible formulation of the active ingredients in the FXT and investigated their efficacy in DR zebrafish for further clinical applications.
Collapse
Affiliation(s)
- Ning Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqiang Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshuang Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Almutairi M, Chechalk K, Deane E, Fox R, Janes A, Maguire-Henry T, McCabe D, O'Connor C, Quirk J, Swan E, White K, McCreery K, Isweisi E, Stewart P, Branagan A, Roche EF, Meehan J, Molloy EJ. Biomarkers in retinopathy of prematurity: a systematic review and meta-analysis. Front Pediatr 2024; 12:1371776. [PMID: 38571701 PMCID: PMC10987861 DOI: 10.3389/fped.2024.1371776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Aim Retinopathy of prematurity is a significant global cause of childhood blindness. This study aims to identify serum biomarkers that are associated with the development of ROP. Methods A systematic review and meta-analysis was conducted using PRISMA guidelines. Three databases were searched (Pubmed, Scopus and Web of Science) from 2003 to March 2023. Only studies investigating serum biomarker levels in preterm infants (<37 weeks gestation) were included. Results Meta-analysis suggests that low serum IGF-1 levels have a strong association with the development of ROP [SMD (95% CI) of -.46 [-.63, -.30], p < .001]. Meta-analysis suggests that higher serum glucose levels were associated with the development of ROP [SMD (95% CI) of 1.25 [.94, 1.55], p < .001]. Meta-analysis suggests that thrombocytopenia is associated with the development of ROP [SMD (95% CI) of -.62 [-.86, -.37], p < .001]. Conclusion Low levels of serum IGF-1, high levels of serum glucose and thrombocytopenia all appear to have the strongest association with the development of ROP out of the 63 biomarkers investigated in this review. These associations highlight their potential use as diagnostic biomarkers in ROP, though further research is needed to establish the exact relationship between these biomarkers and disease pathogenesis.
Collapse
Affiliation(s)
- Mariam Almutairi
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Katherine Chechalk
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Emelia Deane
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rebecca Fox
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Ava Janes
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Tidgh Maguire-Henry
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Devin McCabe
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Cole O'Connor
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Joseph Quirk
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Evan Swan
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Katherine White
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Kathryn McCreery
- Paediatric Ophthalmology, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Eman Isweisi
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Philip Stewart
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Aoife Branagan
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Paediatrics, Coombe Hospital, Dublin, Ireland
| | - Edna F. Roche
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
- Endocrinology, Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Judith Meehan
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
- Trinity College Dublin, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St James Hospital, The University of Dublin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Paediatrics, Coombe Hospital, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
- Endocrinology, Children's Health Ireland (CHI) at Tallaght, Dublin, Ireland
- Trinity College Dublin, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St James Hospital, The University of Dublin, Dublin, Ireland
- Neurodisability, Children’s Health Ireland (CHI) at Tallaght, Dublin, Ireland
- Neonatology, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| |
Collapse
|
3
|
Lu F, Chen Q, Tang Y, Yao D, Yin Y, Liu Y. Image-free recognition of moderate ROP from mild with machine learning algorithm on plasma Raman spectrum. Exp Eye Res 2024; 239:109773. [PMID: 38171476 DOI: 10.1016/j.exer.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
The retinopathy of prematurity (ROP) can cause serious clinical consequences and, fortunately, it is remediable while the time window for treatment is relatively narrow. Therefore, it is urgent to screen all premature infants and diagnose ROP degree timely, which has become a large workload for pediatric ophthalmologists. We developed a retinal image-free procedure using small amount of blood samples based on the plasma Raman spectrum with the machine learning model to automatically classify ROP cases before medical intervention was performed. Statistical differences in infrared Raman spectra of plasma samples were found among the control, mild (ZIIIS1), moderate (ZIIIS2 & ZIIS1), and advanced (ZIIS2) ROP groups. With the different wave points of Raman spectra as the inputs, the outputs of our support vector machine showed that the area under the curves in the receiver operating characteristic (AUC) were 0.763 for the pair comparisons of the control with the mild groups, 0.821 between moderate and advanced groups (ZIIS2), while more than 90% in comparisons of the other four pairs: control vs. moderate (0.981), control vs. advanced (0.963), mild vs. moderate (0.936), and mild vs. advanced (0.953), respectively. Our study could advance principally the ROP diagnosis in two dimensions: the moderate ROPs have been classified remarkably from the mild ones, which leaves more time for the medical treatments, and the procedure of Raman spectrum with a machine learning model based on blood samples can be conveniently promoted to those hospitals lacking of the pediatric ophthalmologists with experience in reading retinal images.
Collapse
Affiliation(s)
- Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37# Guo Xue Xiang Rd, Chengdu, China
| | - Qin Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, 37# Guo Xue Xiang Rd, Chengdu, China
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 4-9 South Renmin Rd, Chengdu, China
| | - Dezhong Yao
- University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, China
| | - Yu Yin
- Chengdu Pano AI Intelligent Technology Co., Ltd., 200 Tianfu Fifth Street, Chengdu, China.
| | - Yang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 4-9 South Renmin Rd, Chengdu, China.
| |
Collapse
|
4
|
Hoyek S, Cruz NFSD, Patel NA, Al-Khersan H, Fan KC, Berrocal AM. Identification of novel biomarkers for retinopathy of prematurity in preterm infants by use of innovative technologies and artificial intelligence. Prog Retin Eye Res 2023; 97:101208. [PMID: 37611892 DOI: 10.1016/j.preteyeres.2023.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Retinopathy of prematurity (ROP) is a leading cause of preventable vision loss in preterm infants. While appropriate screening is crucial for early identification and treatment of ROP, current screening guidelines remain limited by inter-examiner variability in screening modalities, absence of local protocol for ROP screening in some settings, a paucity of resources and an increased survival of younger and smaller infants. This review summarizes the advancements and challenges of current innovative technologies, artificial intelligence (AI), and predictive biomarkers for the diagnosis and management of ROP. We provide a contemporary overview of AI-based models for detection of ROP, its severity, progression, and response to treatment. To address the transition from experimental settings to real-world clinical practice, challenges to the clinical implementation of AI for ROP are reviewed and potential solutions are proposed. The use of optical coherence tomography (OCT) and OCT angiography (OCTA) technology is also explored, providing evaluation of subclinical ROP characteristics that are often imperceptible on fundus examination. Furthermore, we explore several potential biomarkers to reduce the need for invasive procedures, to enhance diagnostic accuracy and treatment efficacy. Finally, we emphasize the need of a symbiotic integration of biologic and imaging biomarkers and AI in ROP screening, where the robustness of biomarkers in early disease detection is complemented by the predictive precision of AI algorithms.
Collapse
Affiliation(s)
- Sandra Hoyek
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Natasha F S da Cruz
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hasenin Al-Khersan
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Kenneth C Fan
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Audina M Berrocal
- Bascom Palmer Eye Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Harman JC, Pivodic A, Nilsson AK, Boeck M, Yagi H, Neilsen K, Ko M, Yang J, Kinter M, Hellström A, Fu Z. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP). iScience 2023; 26:108021. [PMID: 37841591 PMCID: PMC10568433 DOI: 10.1016/j.isci.2023.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.
Collapse
Affiliation(s)
- Jarrod C. Harman
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Kinter
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Xiang L, Yang QL, Xie BT, Zeng HY, Ding LJ, Rao FQ, Yan T, Lu F, Chen Q, Huang XF. Dysregulated Arginine Metabolism Is Linked to Retinal Degeneration in Cep250 Knockout Mice. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 37656476 PMCID: PMC10479211 DOI: 10.1167/iovs.64.12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Purpose Degeneration of retinal photoreceptors is frequently observed in diverse ciliopathy disorders, and photoreceptor cilium gates the molecular trafficking between the inner and the outer segment (OS). This study aims to generate a homozygous global Cep250 knockout (KO) mouse and study the resulting phenotype. Methods We used Cep250 KO mice and untargeted metabolomics to uncover potential mechanisms underlying retinal degeneration. Long-term follow-up studies using optical coherence tomography (OCT) and electroretinography (ERG) were performed. Results OCT and ERG results demonstrated gradual thinning of the outer nuclear layer (ONL) and progressive attenuation of the scotopic ERG responses in Cep250-/- mice. More TUNEL signal was observed in the ONL of these mice. Immunostaining of selected OS proteins revealed mislocalization of these proteins in the ONL of Cep250-/- mice. Interestingly, untargeted metabolomics analysis revealed arginine-related metabolic pathways were altered and enriched in Cep250-/- mice. Mis-localization of a key protein in the arginine metabolism pathway, arginase 1 (ARG1), in the ONL of KO mice further supports this model. Moreover, adeno-associated virus (AAV)-based retinal knockdown of Arg1 led to similar architectural and functional alterations in wild-type retinas. Conclusions Altogether, these results suggest that dysregulated arginine metabolism contributes to retinal degeneration in Cep250-/- mice. Our findings provide novel insights that increase understanding of retinal degeneration in ciliopathy disorders.
Collapse
Affiliation(s)
- Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiao-Li Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin-Tao Xie
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Yi Zeng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liu-Jun Ding
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng-Qin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Zhou Y, Wang Z, Zhou H, Tan W, Liu J, Cai Y, Huang Q, Li B, He Y, Yoshida S, Li Y. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity. Exp Eye Res 2023; 232:109518. [PMID: 37257714 DOI: 10.1016/j.exer.2023.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The aim of the study is to reveal the expression profiling and clinical significance of peripheral blood mononuclear cell (PBMC) tRNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) of premature infants with treatment-requiring retinopathy of prematurity (ROP). Significantly altered tsRNAs and miRNAs were screened using small RNA sequencing. RT-qPCR was used to verify the altered RNAs identified by small RNA transcriptomics. The target genes, their enriched functions, and possibly involved signaling pathways were identified by bioinformatics analyses. According to the small RNA sequencing, 125 tsRNAs and 205 miRNAs were significantly altered in PBMCs obtained from infants with treatment-requiring ROP compared with the premature controls without retinopathy. We preliminarily validated the significant alterations of 6 tsRNAs and 9 miRNAs. The target genes for those tsRNAs were enriched for cellular macromolecule metabolic process, intracellular anatomical structure, transcription regulatory region nucleic acid binding, and Th17 cell differentiation; those of the altered miRNAs were enriched for the developmental process, cell junction, DNA-binding transcription activator activity, and FoxO signaling pathway. By verification with the extended sample size, we identified tsRNAs and miRNAs that could be potential biomarkers with clinical values. The study recognized the alterations and clinical significance of changed tsRNA/miRNA profiles in PBMCs from premature infants with ROP. These significantly altered tsRNAs and miRNAs might be useful as potential diagnostic biomarkers and molecular targets for treatment-requiring ROP.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Jie Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
8
|
Guo HL, Wang WJ, Dong N, Zhao YT, Dai HR, Hu YH, Zhang YY, Wang J, Qiu JC, Lu XP, Chen F. Integrating metabolomics and lipidomics revealed a decrease in plasma fatty acids but an increase in triglycerides in children with drug-refractory epilepsy. Epilepsia Open 2023. [PMID: 36808532 DOI: 10.1002/epi4.12712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE The drug-refractory epilepsy (DRE) in children is commonly observed but the underlying mechanisms remain elusive. We examined whether fatty acids (FAs) and lipids are potentially associated with the pharmacoresistance to valproic acid (VPA) therapy. METHODS This single-center, retrospective cohort study was conducted using data from pediatric patients collected between May 2019 and December 2019 at the Children's Hospital of Nanjing Medical University. Ninety plasma samples from 53 responders with VPA monotherapy (RE group) and 37 non-responders with VPA polytherapy (NR group) were collected. Non-targeted metabolomics and lipidomics analysis for those plasma samples were performed to compare the potential differences of small metabolites and lipids between the two groups. Plasma metabolites and lipids passing the threshold of variable importance in projection value >1, fold change >1.2 or <0.8, and p-value <0.05 were regarded as statistically different substances. RESULTS A total of 204 small metabolites and 433 lipids comprising 16 different lipid subclasses were identified. The well-established partial least squares-discriminant analysis (PLS-DA) revealed a good separation of the RE from the NR group. The FAs and glycerophospholipids status were significantly decreased in the NR group, but their triglycerides (TG) levels were significantly increased. The trend of TG levels in routine laboratory tests was in line with the lipidomics analysis. Meanwhile, cases from the NR group were characterized by a decreased level of citric acid and L-thyroxine, but with an increased level of glucose and 2-oxoglutarate. The top two enriched metabolic pathways involved in the DRE condition were biosynthesis of unsaturated FAs and linoleic acid metabolism. SIGNIFICANCE The results of this study suggested an association between metabolism of FAs and the medically intractable epilepsy. Such novel findings might propose a potential mechanism linked to the energy metabolism. Ketogenic acid and FAs supplementation might therefore be high-priority strategies for DRE management.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
杨 秋, 李 思, 郝 虎, 古 霞, 石 聪, 肖 昕, 蔡 尧. [Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:140-146. [PMID: 36854689 PMCID: PMC9979382 DOI: 10.7499/j.issn.1008-8830.2209142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/17/2022] [Indexed: 03/03/2023]
Abstract
OBJECTIVES To study new biomarkers for the early diagnosis of retinopathy of prematurity (ROP) by analyzing the differences in blood metabolites based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and metabolomics. METHODS Dried blood spots were collected from 21 infants with ROP (ROP group) and 21 infants without ROP (non-ROP group) who were hospitalized in the Sixth Affiliated Hospital of Sun Yat-sen University from January 2013 to December 2016. LC-MS/MS was used to measure the metabolites, and orthogonal partial least squares-discriminant analysis was used to search for differentially expressed metabolites and biomarkers. RESULTS There was a significant difference in blood metabolic profiles between the ROP and non-ROP groups. The pattern recognition analysis, Score-plot, and weight analysis obtained 10 amino acids with a relatively large difference. Further statistical analysis showed that the ROP group had significant increases in blood levels of glutamic acid, leucine, aspartic acid, ornithine, and glycine compared with the non-ROP group (P<0.05). The receiver operating characteristic curve analysis showed that glutamic acid and ornithine had the highest value in diagnosing ROP. CONCLUSIONS Blood metabolites in preterm infants with ROP are different from those without ROP. Glutamic acid and ornithine are the metabolic markers for diagnosing ROP. LC-MS/MS combined with metabolomics analysis has a potential application value in the early identification and diagnosis of ROP.
Collapse
Affiliation(s)
| | | | - 虎 郝
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | | - 聪聪 石
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | - 昕 肖
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | |
Collapse
|
10
|
Essential Role of Multi-Omics Approaches in the Study of Retinal Vascular Diseases. Cells 2022; 12:cells12010103. [PMID: 36611897 PMCID: PMC9818611 DOI: 10.3390/cells12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal vascular disease is a highly prevalent vision-threatening ocular disease in the global population; however, its exact mechanism remains unclear. The expansion of omics technologies has revolutionized a new medical research methodology that combines multiple omics data derived from the same patients to generate multi-dimensional and multi-evidence-supported holistic inferences, providing unprecedented opportunities to elucidate the information flow of complex multi-factorial diseases. In this review, we summarize the applications of multi-omics technology to further elucidate the pathogenesis and complex molecular mechanisms underlying retinal vascular diseases. Moreover, we proposed multi-omics-based biomarker and therapeutic strategy discovery methodologies to optimize clinical and basic medicinal research approaches to retinal vascular diseases. Finally, the opportunities, current challenges, and future prospects of multi-omics analyses in retinal vascular disease studies are discussed in detail.
Collapse
|
11
|
Amino Acids Metabolism in Retinopathy: From Clinical and Basic Research Perspective. Metabolites 2022; 12:metabo12121244. [PMID: 36557282 PMCID: PMC9781488 DOI: 10.3390/metabo12121244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Retinopathy, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinopathy of prematurity (ROP), are the leading cause of blindness among seniors, working-age populations, and children. However, the pathophysiology of retinopathy remains unclear. Accumulating studies demonstrate that amino acid metabolism is associated with retinopathy. This study discusses the characterization of amino acids in DR, AMD, and ROP by metabolomics from clinical and basic research perspectives. The features of amino acids in retinopathy were summarized using a comparative approach based on existing high-throughput metabolomics studies from PubMed. Besides taking up a large proportion, amino acids appear in both human and animal, intraocular and peripheral samples. Among them, some metabolites differ significantly in all three types of retinopathy, including glutamine, glutamate, alanine, and others. Studies on the mechanisms behind retinal cell death caused by glutamate accumulation are on the verge of making some progress. To develop potential therapeutics, it is imperative to understand amino acid-induced retinal functional alterations and the underlying mechanisms. This review delineates the significance of amino acid metabolism in retinopathy and provides possible direction to discover therapeutic targets for retinopathy.
Collapse
|
12
|
Ding C, Wang N, Wang Z, Yue W, Li B, Zeng J, Yoshida S, Yang Y, Zhou Y. Integrated Analysis of Metabolomics and Lipidomics in Plasma of T2DM Patients with Diabetic Retinopathy. Pharmaceutics 2022; 14:pharmaceutics14122751. [PMID: 36559245 PMCID: PMC9786316 DOI: 10.3390/pharmaceutics14122751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a major cause of blindness worldwide and may be non-proliferative (NPDR) or proliferative (PDR). To Investig.gate the metabolomic and lipidomic characteristics of plasma in DR patients, plasma samples were collected from patients with type 2 diabetes mellitus (DR group) with PDR (n = 27), NPDR (n = 18), or no retinopathy (controls, n = 21). Levels of 54 and 41 metabolites were significantly altered in the plasma of DR patients under positive and negative ion modes, respectively. By subgroup analysis, 74 and 29 significantly changed plasma metabolites were detected in PDR patients compared with NPDR patients under positive and negative ion modes, respectively. KEGG analysis indicated that pathways such as biosynthesis of amino acids and neuroactive ligand-receptor interaction were among the most enriched pathways in altered metabolites in the DR group and PDR subgroup. Moreover, a total of 26 and 41 lipids were significantly changed in the DR group and the PDR subgroup, respectively. The panel using the 29-item index could discriminate effectively between diabetic patients with and without retinopathy, and the panel of 22 items showed effective discrimination between PDR and NPDR. These results provide a basis for further research into the therapeutic targets associated with these metabolite and lipid alterations.
Collapse
Affiliation(s)
- Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenyun Yue
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yan Yang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence: (Y.Y.); (Y.Z.)
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence: (Y.Y.); (Y.Z.)
| |
Collapse
|
13
|
Metabolomics and Biomarkers in Retinal and Choroidal Vascular Diseases. Metabolites 2022; 12:metabo12090814. [PMID: 36144219 PMCID: PMC9503269 DOI: 10.3390/metabo12090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is one of the most important structures in the eye, and the vascular health of the retina and choroid is critical to visual function. Metabolomics provides an analytical approach to endogenous small molecule metabolites in organisms, summarizes the results of “gene-environment interactions”, and is an ideal analytical tool to obtain “biomarkers” related to disease information. This study discusses the metabolic changes in neovascular diseases involving the retina and discusses the progress of the study from the perspective of metabolomics design and analysis. This study advocates a comparative strategy based on existing studies, which encompasses optimization of the performance of newly identified biomarkers and the consideration of the basis of existing studies, which facilitates quality control of newly discovered biomarkers and is recommended as an additional reference strategy for new biomarker discovery. Finally, by describing the metabolic mechanisms of retinal and choroidal neovascularization, based on the results of existing studies, this study provides potential opportunities to find new therapeutic approaches.
Collapse
|
14
|
Li Y, Zhou H, Huang Q, Tan W, Cai Y, Wang Z, Zou J, Li B, Yoshida S, Zhou Y. Potential biomarkers for retinopathy of prematurity identified by circular RNA profiling in peripheral blood mononuclear cells. Front Immunol 2022; 13:953812. [PMID: 36081509 PMCID: PMC9447331 DOI: 10.3389/fimmu.2022.953812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to reveal the altered expression profiles of circular RNAs (circRNAs) in the peripheral blood mononuclear cells (PBMCs) of patients with retinopathy of prematurity (ROP), and to identify potential biomarkers for ROP diagnosis. Methods Differentially expressed circRNAs in PBMCs of five infants with ROP and five controls were identified using microarray analysis. Twelve altered circRNAs were validated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatic analyses were conducted to predict the circRNA/miRNA interactions, competing endogenous RNA (ceRNA) network, related biological functions, and signaling pathways. Four selected circRNAs in PBMCs were verified using RT-qPCR in another cohort, including 24 infants with ROP and 23 premature controls, and receiver operating characteristic (ROC) curves were used to estimate their potential as diagnostic biomarkers of ROP. Results A total of 54 and 143 circRNAs were significantly up- and down-regulated, respectively, in the PBMCs of patients with ROP compared with controls. Twelve of the significantly altered circRNAs were preliminarily validated by RT-qPCR, which confirmed the reliability of the microarray analysis. The circRNA/miRNA interactions and ceRNA network were displayed according to the altered circRNAs. Three circRNAs (hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554) were identified as potential diagnostic biomarkers for ROP with certain clinical values. Conclusions CircRNAs were significantly altered in PBMCs of treatment-requiring ROP patients. CircRNAs may be used as potential biomarkers and possible therapeutic targets for ROP.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou,
| |
Collapse
|
15
|
Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, Zhou Y. Novel Potential Biomarkers for Retinopathy of Prematurity. Front Med (Lausanne) 2022; 9:840030. [PMID: 35187013 PMCID: PMC8848752 DOI: 10.3389/fmed.2022.840030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is the main risk factor for vision-threatening disease in premature infants with low birth weight. An accumulating number of independent studies have focused on ROP pathogenesis and have demonstrated that laser photocoagulation therapy and/or anti-VEGF treatment are effective. However, early diagnosis of ROP is still critical. At present, the main method of ROP screening is based on binocular indirect ophthalmoscopy. However, the judgment of whether ROP occurs and whether treatment is necessary depends largely on ophthalmologists with a great deal of experience. Therefore, it is essential to develop a simple, accurate and effective diagnostic method. This review describes recent findings on novel biomarkers for the prediction, diagnosis and prognosis of ROP patients. The novel biomarkers were separated into the following categories: metabolites, cytokines and growth factors, non-coding RNAs, iconography, gut microbiota, oxidative stress biomarkers, and others. Biomarkers with high sensitivity and specificity are urgently needed for the clinical applications of ROP. In addition, using non-invasive or minimally invasive methods to obtain samples is also important. Our review provides an overview of potential biomarkers of ROP.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
16
|
Nilsson AK, Tebani A, Malmodin D, Pedersen A, Hellgren G, Löfqvist C, Hansen-Pupp I, Uhlén M, Hellström A. Longitudinal Serum Metabolomics in Extremely Premature Infants: Relationships With Gestational Age, Nutrition, and Morbidities. Front Neurosci 2022; 16:830884. [PMID: 35250465 PMCID: PMC8891494 DOI: 10.3389/fnins.2022.830884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 02/02/2023] Open
Abstract
An increasing number of extremely premature infants survive the neonatal period and beyond. Little is known about the maturation of the preterm infant’s metabolome and its relation to the development of morbidities. Using 1H-NMR, we investigated the serum metabolic profile of 87 infants born at a gestational age (GA) <28 weeks [mean GA (SD) 25.4 (1.4) weeks] in samples longitudinally collected from birth to term equivalent age. The infant metabolome was analyzed in relation to GA, postnatal age, nutrition, and preterm morbidities. At postnatal day 1, low GA correlated with high levels of 3-hydroxyisobutyrate, acetate, acetoacetate, acetone, formate, glucose, and valine. Nearly all quantified metabolites displayed postnatal concentration changes. For example, the two phospholipid-related metabolites myo-inositol and ethanolamine displayed a similar decline from birth over the first weeks of life, irrespectively of GA. The proportion of enteral/parenteral energy intake in the first 28 days significantly correlated with mean levels of 52% of the analyzed metabolites. Low enteral energy intake was associated with high serum levels of 3-hydroxyisobutyrate, creatinine, glucose, glycerol, histidine, lactate, leucine, lysine, methionine, ornithine, phenylalanine, proline, threonine, and uridine. There were also significant correlations between high enteral intake and high serum levels of isoleucine and tyrosine. Retinopathy of prematurity (ROP) and bronchopulmonary dysplasia (BPD) outcomes were not significantly associated with metabolite levels in the neonatal period after correcting for multiple testing. In conclusion, the serum metabolome of extremely premature infants changes substantially in the neonatal period, largely driven by the gradual transfer from total parenteral nutrition to full enteral feeding. Further studies are needed to disentangle the intricate relationships between the metabolome, nutritional management, GA, and the development of preterm morbidities.
Collapse
Affiliation(s)
- Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Anders K. Nilsson,
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, UNIROUEN, INSERM U1245, CHU Rouen, Rouen University Hospital, Normandie University, Rouen, France
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hansen-Pupp
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Yang Y, Yang Q, Luo S, Zhang Y, Lian C, He H, Zeng J, Zhang G. Comparative Analysis Reveals Novel Changes in Plasma Metabolites and Metabolomic Networks of Infants With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35060995 PMCID: PMC8787637 DOI: 10.1167/iovs.63.1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Advances in mass spectrometry have provided new insights into the role of metabolomics in the etiology of several diseases. Studies on retinopathy of prematurity (ROP), for example, overlooked the role of metabolic alterations in disease development. We employed comprehensive metabolic profiling and gold-standard metabolic analysis to explore major metabolites and metabolic pathways, which were significantly affected in early stages of pathogenesis toward ROP. Methods This was a multicenter, retrospective, matched-pair, case-control study. We collected plasma from 57 ROP cases and 57 strictly matched non-ROP controls. Non-targeted ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) was used to detect the metabolites. Machine learning was employed to reveal the most affected metabolites and pathways in ROP development. Results Compared with non-ROP controls, we found a significant metabolic perturbation in the plasma of ROP cases, which featured an increase in the levels of lipids, nucleotides, and carbohydrate metabolites and lower levels of peptides. Machine leaning enabled us to distinguish a cluster of metabolic pathways (glycometabolism, redox homeostasis, lipid metabolism, and arginine pathway) were strongly correlated with the development of ROP. Moreover, the severity of ROP was associated with the levels of creatinine and ribitol; also, overactivity of aerobic glycolysis and lipid metabolism was noted in the metabolic profile of ROP. Conclusions The results suggest a strong correlation between metabolic profiling and retinal neovascularization in ROP pathogenesis. These findings provide an insight into the identification of novel metabolic biomarkers for the diagnosis and prevention of ROP, but the clinical significance requires further validation.
Collapse
Affiliation(s)
- Yuhang Yang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Qian Yang
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sisi Luo
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yinsheng Zhang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Chaohui Lian
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Honghui He
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Tomita Y, Usui-Ouchi A, Nilsson AK, Yang J, Ko M, Hellström A, Fu Z. Metabolism in Retinopathy of Prematurity. Life (Basel) 2021; 11:1119. [PMID: 34832995 PMCID: PMC8620873 DOI: 10.3390/life11111119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity is defined as retinal abnormalities that occur during development as a consequence of disturbed oxygen conditions and nutrient supply after preterm birth. Both neuronal maturation and retinal vascularization are impaired, leading to the compensatory but uncontrolled retinal neovessel growth. Current therapeutic interventions target the hypoxia-induced neovessels but negatively impact retinal neurons and normal vessels. Emerging evidence suggests that metabolic disturbance is a significant and underexplored risk factor in the disease pathogenesis. Hyperglycemia and dyslipidemia correlate with the retinal neurovascular dysfunction in infants born prematurely. Nutritional and hormonal supplementation relieve metabolic stress and improve retinal maturation. Here we focus on the mechanisms through which metabolism is involved in preterm-birth-related retinal disorder from clinical and experimental investigations. We will review and discuss potential therapeutic targets through the restoration of metabolic responses to prevent disease development and progression.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| |
Collapse
|
19
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
20
|
Li Y, Cai Y, Huang Q, Tan W, Li B, Zhou H, Wang Z, Zou J, Ding C, Jiang B, Yoshida S, Zhou Y. Altered Fecal Microbiome and Metabolome in a Mouse Model of Choroidal Neovascularization. Front Microbiol 2021; 12:738796. [PMID: 34512615 PMCID: PMC8427291 DOI: 10.3389/fmicb.2021.738796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Choroidal neovascularization (CNV) is the defining feature of neovascular age-related macular degeneration (nAMD). Gut microbiota might be deeply involved in the pathogenesis of nAMD. This study aimed to reveal the roles of the gut microbiome and fecal metabolome in a mouse model of laser-induced CNV. Methods The feces of C57BL/6J mice with or without laser-induced CNV were collected. Multi-omics analyses, including 16S rRNA gene sequencing and untargeted metabolomics, were conducted to analyze the changes in the gut microbial composition and the fecal metabolomic profiles in CNV mice. Results The gut microbiota was significantly altered in CNV mice. The abundance of Candidatus_Saccharimonas was significantly upregulated in the feces of CNV mice, while 16 genera, including Prevotellaceae_NK3B31_group, Candidatus_Soleaferrea, and Truepera, were significantly more abundant in the controls than in the CNV group. Fecal metabolomics identified 73 altered metabolites (including 52 strongly significantly altered metabolites) in CNV mice compared to control mice. Correlation analysis indicated significant correlations between the altered fecal metabolites and gut microbiota genera, such as Lachnospiraceae_UCG-001 and Candidatus_Saccharimonas. Moreover, KEGG analysis revealed six pathways associated with these altered metabolites, such as the ABC transporter, primary bile acid biosynthesis and steroid hormone biosynthesis pathways. Conclusion The study identified an altered fecal microbiome and metabolome in a CNV mouse model. The altered microbes, metabolites and the involved pathways might be associated with the pathogenesis of nAMD.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
21
|
Zhou Y, Tan W, Zou J, Cao J, Huang Q, Jiang B, Yoshida S, Li Y. Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34374743 PMCID: PMC8363770 DOI: 10.1167/iovs.62.10.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Retinal neovascularization is a severe pathological process leading to irreversible blindness. This study aims to identify the altered metabolites and their related pathways that are involved in retinal neovascularization. Methods To reveal the global metabolomic profile change in the retinal neovascularization process, an untargeted metabolomics analysis of oxygen-induced retinopathy (OIR) mice retinas was carried out first, followed by the validation of amino acids and their derivatives through a targeted metabolomics analysis. The involved pathways were predicted by bioinformatic analysis. Results By untargeted metabolomics, a total of 58 and 49 metabolites altered significantly in OIR retinas under cationic and anionic modes, respectively. By bioinformatics analysis, “ABC transporters,” “central carbon metabolism in cancer.” and “alanine, aspartate, and glutamate metabolism” were the most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the changed metabolites. By targeted metabolomics, no significant change was found in the assessed amino acids and their derivatives at postnatal day (P) 12, whereas significantly altered amino acids and their derivatives were recognized at P13, P17, and P42 in OIR retinas. Conclusions The metabolomic profile was significantly altered in the neovascularized retinas. In particular, numerous amino acids and their derivatives were significantly changed in OIR retinas. These altered metabolites, together with their associated pathways, might be involved in the pathogenesis of retinal neovascular diseases.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jian Cao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
22
|
Zhou Y, Xu Y, Zhang X, Huang Q, Tan W, Yang Y, He X, Yoshida S, Zhao P, Li Y. Plasma levels of amino acids and derivatives in retinopathy of prematurity. Int J Med Sci 2021; 18:3581-3587. [PMID: 34522185 PMCID: PMC8436098 DOI: 10.7150/ijms.63603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Retinopathy of prematurity (ROP) is a retinal disease that causes blindness in premature infants. This study aimed to reveal the changes in amino acids and derivatives in the plasma of ROP patients compared with premature infants without ROP. Methods: Metabolomics targeting amino acids and their derivatives was conducted to assess their plasma levels in ROP patients (n=58) and premature infants without ROP (n=25), and KEGG pathway analysis was used to identify the involved pathways. Results: Among the 31 assessed metabolites, the levels of 4 amino acids were significantly altered in the ROP group. Creatinine was downregulated in the plasma of the ROP patients, while the levels of citrulline, arginine, and aminoadipic acid were upregulated in the ROP group. Significant correlations were identified between the ROP stage and plasma levels of citrulline, creatinine, and aminoadipic acid. The involved pathways included biosynthesis of amino acids, arginine and proline metabolism, and arginine biosynthesis. Conclusion: The plasma levels of citrulline, creatinine, arginine, and aminoadipic acid were significantly changed in ROP patients. These metabolites could be considered potential biomarkers of ROP, and their related metabolic pathways might be involved in ROP pathogenesis.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yonghui Yang
- Department of Neonatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaori He
- Department of Neonatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|