1
|
Li J, Chen Y, Wang W, Zhang Y, Su G, Wang SK, Zhang Y, Yao Y, Wu S, Lu W, Zhang K, Qiao C, Li S, Li H, Cheng CY, Liu Y, Wang N. Linking Iris Cis-Regulatory Variants to Primary Angle-Closure Glaucoma Via Clinical Imaging and Multiomics. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39652066 PMCID: PMC11629910 DOI: 10.1167/iovs.65.14.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose To elucidate the genetic basis of primary angle-closure glaucoma (PACG) by identifying pathogenic tissue and critical tissue-specific variants. Methods The correlations among PACG susceptibility, axial length (AL), and anterior chamber depth (ACD) were evaluated using meta-analyses. Propensity score matching was utilized on 2161 participants from the Handan Eye Study to determine the risk factors independent of ACD and AL for PACG. Subsequently, we employed the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and allele-specific self-transcribing active regulatory region sequencing (STARR-seq) to screen 202 PACG genome-wide association study (GWAS) variants for chromatin accessibility and functional roles. Results The meta-analysis found that PACG susceptibility loci are not associated with ACD or AL. However, abnormal iris phenotypes emerged as significant independent risk factors for primary angle-closure disease (PACD), unrelated to ACD and AL. Substantial enrichment of PACG heritability was observed in the open chromatin regions of the human iris. Within the iris-relevant cellular context, 22 out of the 202 PACG GWAS variants could influence enhancer activity. Two variants in the iris open chromatin regions were implicated in the modulation of PLEKHA7 and C10orf53 expression. The downregulation of these two genes affects cytoskeletal organization. Conclusions Our findings underscore the importance of the iris in the pathogenesis of PACG and identified iris-specific, enhancer-modulating variants that may influence disease risk. Our approach also provides a generalizable framework for studying ocular diseases from the perspective of enhancer-modulating variants.
Collapse
Affiliation(s)
- Jiaying Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yun Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Ye Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guangsong Su
- Department of Laboratory Medicine and Institute of Precise Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Yuanyuan Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yilong Yao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| | - Shen Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wange Lu
- Department of Laboratory Medicine and Institute of Precise Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kunlin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Chunyan Qiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuning Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hengtong Li
- Centre for Innovation & Precision Eye Health, National University of Singapore, Queenstown, Singapore
| | - Ching-Yu Cheng
- Centre for Innovation & Precision Eye Health, National University of Singapore, Queenstown, Singapore
| | - Yuwen Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Henan Academy of Innovations in Medical Science, Henan, China
| |
Collapse
|
2
|
Liang YJ, Wang YY, Rong SS, Chen ZJ, Chen SY, Tham JA, Chan PP, Yam JC, Wiggs JL, Pang CP, Tham CC, Chen LJ. Genetic Associations of Primary Angle-Closure Disease: A Systematic Review and Meta-Analysis. JAMA Ophthalmol 2024; 142:437-444. [PMID: 38546604 PMCID: PMC10979365 DOI: 10.1001/jamaophthalmol.2024.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/12/2024] [Indexed: 04/01/2024]
Abstract
Importance Effects of genetic variants on primary angle-closure disease remained uncertain. Objective To systematically review the associations of common single-nucleotide variants (SNVs) and rare coding variants with primary angle-closure disease, its subtypes (including primary angle-closure glaucoma, primary angle-closure suspect, and primary angle-closure) and progression. Data Sources Eligible studies from PubMed, Embase, and Web of Science were retrieved up to April 3, 2023. SNV information was extracted from eligible reports and 2 genome-wide association studies summary statistics, UK BioBank and FinnGen. Study Selection Studies providing analyzable genotype or allele data in a case-control design for primary angle-closure disease association and longitudinal case-only design for primary angle-closure disease progression. Data Extraction and Synthesis PRISMA guidelines were used for literature screening and the Newcastle Ottawa Scale for data quality assessment. Pooled effect size with 95% CIs of SNV associations were calculated using fixed- or random-effect models according to I2 statistics. Main Outcomes and Measures SNVs reported in 2 or more studies were meta-analyzed to generate pooled odds ratios and P values. Common and rare coding variants from single reports were summarized. Results Sixty-nine citations were eligible for meta-analysis on overall primary angle-closure disease, involving 206 SNVs in 64 genes or loci. Seventeen SNVs in 15 genes or loci showed associations with primary angle-closure disease, and 15 SNVs in 13 genes or loci showed associations with primary angle-closure glaucoma. Two SNVs, ABCA1 rs2422493 and ZNRF3 rs3178915, were associated only with primary angle-closure disease. Two SNVs, PCMTD1-ST18 rs1015213 and COL11A1 rs3753841, were associated with primary angle-closure suspect, and 1 SNV, MMP9 rs3918249, was associated with primary angle-closure. This systematic review and meta-analysis newly confirmed 7 genes or loci associated with primary angle-closure glaucoma: ATOH7, CALCRL, FBN1, IL6, LOXL1, MMP19, and VAV3. Common and rare coding variants in 16 genes or loci that have been associated with primary angle-closure disease were cataloged. Stratification analysis revealed different primary angle-closure disease-associated genes in different ethnic populations. Only 1 study regarding the genetic association of primary angle-closure glaucoma progression was identified. Conclusions and Relevance This study revealed the genetic complexity of primary angle-closure disease, involving common SNVs and rare coding variants in more than 30 genes or loci, with ethnic and phenotypic diversities. Further replication, genotype-phenotype correlation, and pathway analyses are warranted.
Collapse
Affiliation(s)
- Yu Jing Liang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Yao Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi Song Rong
- Department of Ophthalmology, Mass Eye and Ear, Mass General Brigham, Boston, Massachusetts
| | - Zhen Ji Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Ying Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jenson A. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Poemen P. Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
| | - Jason C. Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
| | - Janey L. Wiggs
- Department of Ophthalmology, Mass Eye and Ear, Mass General Brigham, Boston, Massachusetts
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
3
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
4
|
Balasubramaniam B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Effectors of anterior morphogenesis in C. elegans embryos. Biol Open 2023; 12:bio059982. [PMID: 37345480 PMCID: PMC10339035 DOI: 10.1242/bio.059982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. At present, the factors that contribute to aECM function are mostly unknown, including the aECM components themselves, their posttranslational regulators, and the pathways required for their secretion. Here we showed that two proteins previously linked to aECM function, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function in a complex. Proteomics experiments also suggested potential roles for SYM-3/FAM102A and SYM-4/WDR44 family proteins in intracellular trafficking. Nonetheless, we found no evidence to support a critical function for SYM-3 or SYM-4 in the apical deposition of two aECM components, NOAH-1 and FBN-1. Moreover, loss of a key splicing regulator of fbn-1, MEC-8/RBPMS2, had surprisingly little effect on the abundance or deposition of FBN-1. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. We also characterized morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a similar phenotype to mec-8; sym double mutants. Collectively, these findings add to our knowledge of factors controlling embryonic morphogenesis.
Collapse
Affiliation(s)
- Boopathi Balasubramaniam
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Sarina M. Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| |
Collapse
|
5
|
Boopathi B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Pathways that affect anterior morphogenesis in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537986. [PMID: 37163004 PMCID: PMC10168279 DOI: 10.1101/2023.04.23.537986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. We showed that two conserved proteins linked to this process, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function together in a complex. Proteomics data also suggested potential roles for FAM102A and WDR44 family proteins in intracellular trafficking, consistent with their localization patterns. Nonetheless, we found no evidence to support a clear function for SYM-3 or SYM-4 in the apical deposition of two aECM components, FBN-1 and NOAH. Surprisingly, loss of MEC-8/RBPMS2, a conserved splicing factor and regulator of fbn-1 , had little effect on the abundance or deposition of FBN-1 to the aECM. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. Lastly, we examined morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a related embryonic phenotype to mec-8; sym double mutants. Collectively, our findings add to our knowledge of pathways controlling embryonic morphogenesis. SUMMARY STATEMENT We identify new proteins in apical ECM biology in C. elegans and provide evidence that SYM-3/FAM102A and SYM-4/WDR44 function together in trafficking but do not regulate apical ECM protein deposition.
Collapse
Affiliation(s)
- Balasubramaniam Boopathi
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina M Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
6
|
Asian Race and Primary Open-Angle Glaucoma: Where Do We Stand? J Clin Med 2022; 11:jcm11092486. [PMID: 35566612 PMCID: PMC9099679 DOI: 10.3390/jcm11092486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by irreversible retinal ganglion cell damage and visual field loss. The global POAG prevalence is estimated to be 3.05%, and near term is expected to significantly rise, especially within aging Asian populations. Primary angle-closure glaucoma disproportionately affects Asians, with up to four times greater prevalence of normal-tension glaucoma reported compared with high-tension glaucoma. Estimates for overall POAG prevalence in Asian populations vary, with Chinese and Indian populations representing the majority of future cases. Structural characteristics associated with glaucoma progression including the optic nerve head, retina, and cornea are distinct in Asians, serving as intermediates between African and European descent populations. Patterns in IOP suggest some similarities between races, with a significant inverse relationship between age and IOP only in Asian populations. Genetic differences have been suggested to play a role in these differences, however, a clear genetic pattern is yet to be established. POAG pathogenesis differs between Asians and other ethnicities, and it may differ within the broad classification of the Asian race. Greater awareness and further research are needed to improve treatment plans and outcomes for the increasingly high prevalence of normal tension glaucoma within aging Asian populations.
Collapse
|