1
|
Kilic-Toprak E, Cort-Donmez A, Toprak I. Effects of Autologous Serum and Platelet-Rich Plasma on Human Corneal Endothelial Cell Regeneration: A Comparative Study. Eye Contact Lens 2024; 50:106-111. [PMID: 38019585 DOI: 10.1097/icl.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES To investigate the effects of autologous serum (AS) and platelet-rich plasma (PRP) on human corneal endothelial cell (HCEC) proliferation and apoptosis in comparison to Y-27632 as the commonly studied Rho-associated kinase (ROCK) inhibitor. METHODS The human corneal endothelial primary cell line was used for this study. As the treatment groups, HCECs were incubated with AS, PRP, and Y-27632, whereas the control group received no treatment. Cell proliferation (measured by 5-bromo-2'-deoxyuridine [BrdU] incorporation) and apoptosis (based on the caspase-3 level) were compared between the control, Y-27632, AS, and PRP groups. RESULTS In the Y-27632, AS, and PRP groups, the ratios of BrdU-incorporated cells were significantly higher (115±0.2%, 125±0.2%, 122±0.4% at 24 hr, and 138±2.4%, 160±0.2%, 142±0.2% at 48 hr, respectively) than in the control group (100±18.4% at 24 hr, 100±1.1% at 48 hr) ( P <0.05 for all). Furthermore, AS provided a higher HCEC proliferation ratio compared with the Y-27632 group at 24 and 48 hr ( P <0.05 for all). Caspase-3 was significantly lower in the AS group (60.3±3.3%) than in the control (100±2.3%), Y-27632 (101.9±5.2%), and PRP (101±6.8%) groups ( P <0.05 for all). CONCLUSIONS The results of this study demonstrated for the first time that AS and PRP promoted HCEC proliferation and AS significantly decreased apoptosis in HCECs. A superior effect on HCEC proliferation was also observed with AS compared with Y-27632. Future "autologous" regenerative therapeutic options for corneal endothelial failure may involve the utilization of AS and PRP owing to their accessibility, simplicity in preparation, immunologic compatibility, and donor-free nature.
Collapse
Affiliation(s)
- Emine Kilic-Toprak
- Departments of Physiology (E.K.-T.), Biochemistry (A.C.-D.), and Ophthalmology (I.T.), Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | | | | |
Collapse
|
2
|
Dong L, Li X, Leng W, Guo Z, Cai T, Ji X, Xu C, Zhu Z, Lin J. Adipose stem cells in tissue regeneration and repair: From bench to bedside. Regen Ther 2023; 24:547-560. [PMID: 37854632 PMCID: PMC10579872 DOI: 10.1016/j.reth.2023.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
Collapse
Affiliation(s)
- Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| |
Collapse
|
3
|
Alonso-Alonso S, Vázquez N, Chacón M, Caballero-Sánchez N, Del Olmo-Aguado S, Suárez C, Alfonso-Bartolozzi B, Fernández-Vega-Cueto L, Nagy L, Merayo-Lloves J, Meana A. An effective method for culturing functional human corneal endothelial cells using a xenogeneic free culture medium. Sci Rep 2023; 13:19492. [PMID: 37945668 PMCID: PMC10636196 DOI: 10.1038/s41598-023-46590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Endothelial dysfunction is a leading cause of corneal blindness in developed countries and the only available treatment is the endothelial transplantation. However, the limited availability of suitable donors remains a significant challenge, driving the exploration of alternative regenerative therapies. Advanced Therapy Medicinal Products show promise but must adhere to strict regulations that prohibit the use of animal-derived substances. This study investigates a novel culture methodology using Plasma Rich in Growth Factors (PRGF) as the only source of growth factors for primary cultures of human corneal endothelial cells (CECs). CECs were obtained from discarded corneas or endothelial rings and cultured in two different media: one supplemented with xenogeneic factors and other xenogeneic-free, using PRGF. Comprehensive characterization through immunofluorescence, morphological analyses, trans-endothelial electrical resistance measurements, RNA-seq, and qPCR was conducted on the two groups. Results demonstrate that CECs cultured in the xenogeneic-free medium exhibit comparable gene expression, morphology, and functionality to those cultured in the xenogeneic medium. Notably, PRGF-expanded CECs share 46.9% of the gene expression profile with native endothelium and express all studied endothelial markers. In conclusion, PRGF provides an effective source of xenogeneic-free growth factors for the culture of CECs from discarded corneal tissue. Further studies will be necessary to demonstrate the applicability of these cultures to cell therapies that make clinical translation possible.
Collapse
Affiliation(s)
- S Alonso-Alonso
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
| | - N Vázquez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain.
| | - M Chacón
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
| | - N Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology. Faculty of Medicine, University of Debrecen, Nagyerdei Krt, Debrecen, 4032, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Nagyerdei Krt, Debrecen, 4032, Hungary
| | - S Del Olmo-Aguado
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
| | - C Suárez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
| | - B Alfonso-Bartolozzi
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- Instituto Oftalmológico Fernández-Vega. Avenida Doctores Fernández-Vega, 33012, Oviedo, Asturias, Spain
| | - L Fernández-Vega-Cueto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- Instituto Oftalmológico Fernández-Vega. Avenida Doctores Fernández-Vega, 33012, Oviedo, Asturias, Spain
| | - L Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Nagyerdei Krt, Debrecen, 4032, Hungary
- Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, 6Th Ave S, St. Petersburg, FL, 33701, USA
| | - J Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
| | - A Meana
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avenida Doctores Fernández Vega, 33012, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida del Hospital Universitario, 33011, Oviedo, Asturias, Spain
- Unidad de Ingeniería Tisular, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Unidad 714 CIBERER, Calle Emilio Rodríguez Vigil, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Talpan D, Salla S, Meusel L, Walter P, Kuo CC, Franzen J, Fuest M. Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. Int J Mol Sci 2023; 24:ijms24032882. [PMID: 36769200 PMCID: PMC9917909 DOI: 10.3390/ijms24032882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Linus Meusel
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Endothelial keratoplasty is the current gold standard for treating corneal endothelial diseases, achieving excellent visual outcomes and rapid rehabilitation. There are, however, severe limitations to donor tissue supply and uneven access to surgical teams and facilities across the globe. Cell therapy is an exciting approach that has shown promising early results. Herein, we review the latest developments in cell therapy for corneal endothelial disease. RECENT FINDINGS We highlight the work of several groups that have reported successful functional outcomes of cell therapy in animal models, with the utilization of human embryonic stem cells, human-induced pluripotent stem cells and cadaveric human corneal endothelial cells (CECs) to generate populations of CECs for intracameral injection. The use of corneal endothelial progenitors, viability of cryopreserved cells and efficacy of simple noncultured cells, in treating corneal decompensation is of particular interest. Further additions to the collective understanding of CEC physiology, and the process of cultivating and administering effective cell therapy are reviewed as well. SUMMARY The latest developments in cell therapy for corneal endothelial disease are presented. The continuous growth in this field gives rise to the hope that a viable solution to the large numbers of corneal blind around the world will one day be reality.
Collapse
Affiliation(s)
- Evan N Wong
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute
- Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School
- School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|