1
|
Kapoor S, Kalmegh V, Kumar H, Mandoli A, Shard A. Rare diseases and pyruvate kinase M2: a promising therapeutic connection. Drug Discov Today 2024; 29:103949. [PMID: 38492882 DOI: 10.1016/j.drudis.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme that regulates proliferating cell metabolism. The role of PKM2 in common diseases has been well established, but its role in rare diseases (RDs) is less understood. Over the past few years, PKM2 has emerged as a crucial player in RDs, including, neoplastic, respiratory, metabolic, and neurological disorders. Herein, we summarize recent findings and developments highlighting PKM2 as an emerging key player in RDs. We also discuss the current status of PKM2 modulation in RDs with particular emphasis on preclinical and clinical studies in addition to current challenges in the field.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vaishnavi Kalmegh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Mandoli
- Department of Biotechnology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Dong Y, Yan J, Xu W, Paquet-Durand F, Hu Z, Jiao K. HDAC inhibition delays photoreceptor loss in Pde6b mutant mice of retinitis pigmentosa: insights from scRNA-seq and CUT&Tag. PeerJ 2023; 11:e15659. [PMID: 37456870 PMCID: PMC10349563 DOI: 10.7717/peerj.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose This research aimed to ascertain the neuroprotective effect of histone deacetylase (HDAC) inhibition on retinal photoreceptors in Pde6brd1 mice, a model of retinitis pigmentosa (RP). Methods Single-cell RNA-sequencing (scRNA-seq) explored HDAC and poly (ADP-ribose) polymerase (PARP)-related gene expression in both Pde6b-mutant rd1 and wild-type (WT) mice. The CUT&Tag method was employed to examine the functions of HDAC in rd1 mice. Organotypic retinal explant cultures from WT and rd1 mice were exposed to the HDAC inhibitor SAHA (suberoylanilide hydroxamic acid) postnatally, from day 5 to day 11. The terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was applied to quantify the percentage of photoreceptor loss in the outer nuclear layer (ONL). HDAC activity was confirmed to be inhibited by SAHA through an HDAC activity assay. Moreover, the study evaluated PARP activity, a key driver of the initial response to DNA damage during photoreceptor degeneration, following HDAC inhibition. Results The scRNA-seq revealed that diverse roles of HDAC and PARP isoforms in photoreceptor cell death. HDAC-related genes appeared to regulate cell death and primary immunodeficiency. Alterations in HDAC activity were consistent with the TUNEL-positive cells in the ONL at different time points. Notably, SAHA significantly postponed photoreceptor loss and decreased HDAC and PARP activity, thereby implicating both in the same degenerative pathway. Conclusions This study highlights that the interaction between HDAC inhibition and PARP can delay photoreceptor cell death, proposing a promising therapeutic approach for RP.
Collapse
Affiliation(s)
- Yujie Dong
- Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Jie Yan
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
- Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Wenrong Xu
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Zhulin Hu
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Kangwei Jiao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
4
|
Zhou J, Welinder C, Ekström P. The Phosphoproteome of the Rd1 Mouse Retina, a Model of Inherited Photoreceptor Degeneration, Changes after Protein Kinase G Inhibition. Int J Mol Sci 2023; 24:9836. [PMID: 37372984 DOI: 10.3390/ijms24129836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a frequent cause of blindness among the working population in industrial countries due to the inheritable death of photoreceptors. Though gene therapy was recently approved for mutations in the RPE65 gene, there is in general no effective treatment presently. Previously, abnormally high levels of cGMP and overactivation of its dependent protein kinase (PKG) have been suggested as causative for the fatal effects on photoreceptors, making it meaningful to explore the cGMP-PKG downstream signaling for more pathological insights and novel therapeutic target development purposes. Here, we manipulated the cGMP-PKG system in degenerating retinas from the rd1 mouse model pharmacologically via adding a PKG inhibitory cGMP-analogue to organotypic retinal explant cultures. A combination of phosphorylated peptide enrichment and mass spectrometry was then applied to study the cGMP-PKG-dependent phosphoproteome. We identified a host of novel potential cGMP-PKG downstream substrates and related kinases using this approach and selected the RAF1 protein, which may act as both a substrate and a kinase, for further validation. This showed that the RAS/RAF1/MAPK/ERK pathway may be involved in retinal degeneration in a yet unclarified mechanism, thus deserving further investigation in the future.
Collapse
Affiliation(s)
- Jiaming Zhou
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
5
|
Zhou J, Ekström P. Pyruvate Kinase 2, an Energy Metabolism Related Enzyme, May Have a Neuroprotective Function in Retinal Degeneration. ASN Neuro 2023; 15:17590914231151534. [PMID: 36799552 PMCID: PMC9940218 DOI: 10.1177/17590914231151534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited disorder that results in vision impairment but general and mutation-independent therapeutic strategies are not available. However, it is widely regarded that the cGMP system, including cGMP and its interactor cGMP-dependent protein kinase (PKG), acts as a crucial effector during retinal degeneration. We have previously identified a list of cGMP-PKG-dependent genes in the context of RP, and in this study, we further validated one of these, namely pyruvate kinase 2 (PKM2), and investigated the potential role of PKM2 for the photoreceptors' well-being during RP. With the aid of organotypic retinal explant cultures, we pharmacologically manipulated the PKM2 activities in two different RP mouse models (rd2 and rd10) via the addition of TEPP-46 (a PKM2 activator) and found that activation of PKM2 alleviates the progress of photoreceptor death in the rd10 mouse model. We also noted that the expression of both PKM2 and one of its targets, glucose transporter-1 (Glut1), showed alterations depending on the degeneration state. The observations provide supportive evidence that PKM2 may serve as a novel potential molecular target in RP.
Collapse
Affiliation(s)
- Jiaming Zhou
- Ophthalmology, Department of Clinical Sciences, Lund University, Lund, Sweden,Jiaming Zhou, Biomedical Center (BMC-B11), Sölvegatan 19, SE-22362 Lund, Sweden.
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Zhou J, Rasmussen M, Ekström P. A Potential Neuroprotective Role for Pyruvate Kinase 2 in Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:479-483. [PMID: 37440075 DOI: 10.1007/978-3-031-27681-1_70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) is an inherited disorder that results in vision impairment that specific therapeutic strategies are not available. However, it is widely regarded that the cGMP system, including cGMP and its interactor cGMP-dependent protein kinase (PKG), acts as a crucial effector during retinal degeneration. We have previously identified a list of cGMP-PKG-dependent genes in the context of RP, and in this study, we further validated one of the targets, namely, pyruvate kinase 2 (PKM2), and investigated the potential role of PKM2 for the photoreceptors' well-being during RP. With the aid of organotypic retinal explant cultures, we pharmacologically manipulated the PKM2 activities in different RP mouse models via the addition of TEPP-46 (a PKM2 activator) and found that activation of PKM2 alleviates the progress of photoreceptor death in the rd10 mouse model. This observation provides supportive evidence that PKM2 may serve as a novel potential molecular target in RP.
Collapse
Affiliation(s)
- Jiaming Zhou
- Ophthalmology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Michel Rasmussen
- Ophthalmology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
8
|
A Potential Role of Cyclic Dependent Kinase 1 (CDK1) in Late Stage of Retinal Degeneration. Cells 2022; 11:cells11142143. [PMID: 35883586 PMCID: PMC9317054 DOI: 10.3390/cells11142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has long been known to drive the cell cycle and to regulate the division and differentiation of cells. Apart from its role in mitosis regulation, it also exerts multiple functions as a protein kinase, including engagement in cell death, possibly via a cell cycle-independent mechanism. The latter is suggested, since CDK1 re-expression can be found in non-dividing and terminally differentiated neurons in several neurodegeneration models. However, the details of if and how CDK1 might be involved in the neurodegenerative condition, retinitis pigmentosa (RP), which displays progressive vision loss, are unclear. In the present study, we investigated CDK1 in degenerating RP photoreceptors of the rd1 RP model, including whether there is a link between this kinase and the cGMP-PKG system, which is regarded as a disease driver. With experiments performed using either in vivo retinal tissue or in vitro material, via organotypic retinal explants, our results showed that CDK1 appears in the photoreceptors at a late stage of their degeneration, and in such a position, it may be associated with the cGMP-PKG network.
Collapse
|
9
|
Jiang K, Mondal AK, Adlakha YK, Gumerson J, Aponte A, Gieser L, Kim JW, Boleda A, Brooks MJ, Nellissery J, Fox DA, Balaban R, Covian R, Swaroop A. Multiomics analyses reveal early metabolic imbalance and mitochondrial stress in neonatal photoreceptors leading to cell death in Pde6brd1/rd1 mouse model of retinal degeneration. Hum Mol Genet 2022; 31:2137-2154. [PMID: 35075486 PMCID: PMC9618164 DOI: 10.1093/hmg/ddac013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023] Open
Abstract
Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.
Collapse
Affiliation(s)
| | | | - Yogita K Adlakha
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Translational Health Science and Technology Institute, National Capital Region Biotech Cluster, Faridabad, India
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jung-Woong Kim
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Alexis Boleda
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20740, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Donald A Fox
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- To whom correspondence should be addressed. Tel: +301-435-5754; Fax: 301-480-9917;
| |
Collapse
|