1
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Conedera FM, Runnels JM, Stein JV, Alt C, Enzmann V, Lin CP. Assessing the role of T cells in response to retinal injury to uncover new therapeutic targets for the treatment of retinal degeneration. J Neuroinflammation 2023; 20:206. [PMID: 37689689 PMCID: PMC10492418 DOI: 10.1186/s12974-023-02867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Retinal degeneration is a disease affecting the eye, which is an immune-privileged site because of its anatomical and physiological properties. Alterations in retinal homeostasis-because of injury, disease, or aging-initiate inflammatory cascades, where peripheral leukocytes (PL) infiltrate the parenchyma, leading to retinal degeneration. So far, research on PL's role in retinal degeneration was limited to observing a few cell types at specific times or sectioning the tissue. This restricted our understanding of immune cell interactions and response duration. METHODS In vivo microscopy in preclinical mouse models can overcome these limitations enabling the spatio-temporal characterization of PL dynamics. Through in vivo imaging, we assessed structural and fluorescence changes in response to a focal injury at a defined location over time. We also utilized minimally invasive techniques, pharmacological interventions, and knockout (KO) mice to determine the role of PL in local inflammation. Furthermore, we investigated PL abundance and localization during retinal degeneration in human eyes by histological analysis to assess to which extent our preclinical study translates to human retinal degeneration. RESULTS We demonstrate that PL, especially T cells, play a detrimental role during retinal injury response. In mice, we observed the recruitment of helper and cytotoxic T cells in the parenchyma post-injury, and T cells also resided in the macula and peripheral retina in pathological conditions in humans. Additionally, we found that the pharmacological PL reduction and genetic depletion of T-cells reduced injured areas in murine retinas and rescued the blood-retina barrier (BRB) integrity. Both conditions promoted morphological changes of Cx3cr1+ cells, including microglial cells, toward an amoeboid phenotype during injury response. Interestingly, selective depletion of CD8+ T cells accelerated recovery of the BRB compared to broader depletions. After anti-CD8 treatment, the retinal function improved, concomitant to a beneficial immune response. CONCLUSIONS Our data provide novel insights into the adaptive immune response to retinal injury in mice and human retinal degeneration. Such information is fundamental to understanding retinal disorders and developing therapeutics to modulate immune responses to retinal degeneration safely.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland
| | - Judith M Runnels
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zhou X, Zhang J, Ding Y, Huang H, Li Y, Chen W. Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies. Front Genet 2023; 14:1075824. [PMID: 37065470 PMCID: PMC10101437 DOI: 10.3389/fgene.2023.1075824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease and the leading cause of blindness in developed countries. Current genome-wide association studies (GWAS) for late-stage age-related macular degeneration are mainly single-marker-based approaches, which investigate one Single-Nucleotide Polymorphism (SNP) at a time and postpone the integration of inter-marker Linkage-disequilibrium (LD) information in the downstream fine mappings. Recent studies showed that directly incorporating inter-marker connection/correlation into variants detection can help discover novel marginally weak single-nucleotide polymorphisms, which are often missed in conventional genome-wide association studies, and can also help improve disease prediction accuracy. Methods: Single-marker analysis is performed first to detect marginally strong single-nucleotide polymorphisms. Then the whole-genome linkage-disequilibrium spectrum is explored and used to search for high-linkage-disequilibrium connected single-nucleotide polymorphism clusters for each strong single-nucleotide polymorphism detected. Marginally weak single-nucleotide polymorphisms are selected via a joint linear discriminant model with the detected single-nucleotide polymorphism clusters. Prediction is made based on the selected strong and weak single-nucleotide polymorphisms. Results: Several previously identified late-stage age-related macular degeneration susceptibility genes, for example, BTBD16, C3, CFH, CFHR3, HTARA1, are confirmed. Novel genes DENND1B, PLK5, ARHGAP45, and BAG6 are discovered as marginally weak signals. Overall prediction accuracy of 76.8% and 73.2% was achieved with and without the inclusion of the identified marginally weak signals, respectively. Conclusion: Marginally weak single-nucleotide polymorphisms, detected from integrating inter-marker linkage-disequilibrium information, may have strong predictive effects on age-related macular degeneration. Detecting and integrating such marginally weak signals can help with a better understanding of the underlying disease-development mechanisms for age-related macular degeneration and more accurate prognostics.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jipeng Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas, KS, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Solubility measurement of the fludrocortisone acetate in supercritical carbon dioxide: Experimental and modeling assessments. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Roles of CSF2 as a modulator of inflammation during retinal degeneration. Cytokine 2022; 158:155996. [PMID: 35988458 DOI: 10.1016/j.cyto.2022.155996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is a potent cytokine that stimulates myeloid cells, such as dendritic cells and macrophages. We have been analyzing the roles of microglia in retinal degeneration through the modulation of inflammation in the eye, and examined the roles of CSF2 in this process. Both subunits of the CSF2 receptor are expressed in microglia, but no evidence suggesting the involvement of CSF2 in inflammation in the degenerating eye has been reported. We found that Csf2 transcripts were induced in the early phase of in vitro mouse adult retina culture, used as degeneration models, suggesting that CSF2 induction is one of the earliest events occurring in the pathology of retinal degeneration. The administration of CSF2 into the retina after systemic NaIO3 treatment increased the number of microglia. To examine the roles of CSF2 in retinal inflammation, we overexpressed CSF2 in retinal explants. Induction of CSF2 activated microglia and Müller glia, and the layer structure of the retina was severely perturbed. CC motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 10 (Cxcl10), both of which are expressed in activated microglia, were strongly induced by the expression of CSF2 in the retina. The addition of CSF2 to primary retinal microglia and the microglial cell lines MG5 and BV2 showed statistically significant increase in Ccl2 and Il1b transcripts. Furthermore, CSF2 induced proliferation, migration, and phagocytosis in MG5 and/or BV2. The effects of CSF2 on microglia were mild, suggesting that CSF2 induced strong inflammation in the context of the retinal environment.
Collapse
|
6
|
Hong T, Chang A, Maddess T, Provis J, Penfold P. Phase 1B study of the safety and tolerability of the mineralocorticoid fludrocortisone acetate in patients with geographical atrophy. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001032. [PMID: 36161841 PMCID: PMC9252207 DOI: 10.1136/bmjophth-2022-001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To evaluate the safety and tolerability of a mineralocorticoid, in a single-dose intravitreal (IVT) injection of 1 mg/0.1 mL and 2 mg/0.1 mL fludrocortisone acetate (FCA) in subjects with geographical atrophy (GA) secondary to age-related macular degeneration. Methods and Analysis This phase 1b study was a two-part dose-escalation prospective study. Part 1 involved a single participant treated with 1 mg/0.1 mL and monitored up to 28 days before being reviewed by a safety review committee. Two subsequent participants were then dosed with the same dose. Part 2 involved a single participant dosed with 2 mg/0.1 mL and monitored up to 28 days when a further five participants were dosed. All participants were followed up for 6 months after baseline. A full ophthalmic assessment was performed at study visits which included GA area, best-corrected visual acuity (BCVA), low-luminance BCVA (LL-BCVA) and intraocular pressure (IOP). Adverse events (AEs) were reported from the first dose of FCA until the end-of-study visit. Results There were no serious AEs (ocular or systemic) observed with IVT FCA at either 1 mg/0.1 mL or 2 mg/0.1 mL among nine participants. There was no evidence of increased IOP or cataract development. Neither BCVA or LL-BCVA changed significantly in the study-eye over the follow-up period (p=0.28 and 0.38, respectively). Mean GA area increased in the study (0.5 mm2, p=0.003) and fellow-eyes (0.62 mm2, p=0.02) over 6 months. Differences between eyes were not significant (p=0.64), and at the lower end of population norms. Conclusion IVT FCA is clinically safe and well tolerated and did not increase IOP.
Collapse
Affiliation(s)
- Thomas Hong
- CUREOS, Acurio Health, Sydney, New South Wales, Australia
| | - Andrew Chang
- CUREOS, Acurio Health, Sydney, New South Wales, Australia
- Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ted Maddess
- ARC Centre of Excellence in Vision Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan Provis
- Eccles Institute of Neuroscience, Australian National University, Canberra, Australian Capital Territory, Australia
- Eye Co Pty Ltd, Balwyn North, Victoria, Australia
| | - Philip Penfold
- Eye Co Pty Ltd, Balwyn North, Victoria, Australia
- Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|