1
|
Deissler HL, Rehak M, Lytvynchuk L. VEGF-A 165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells. Exp Eye Res 2024; 247:110062. [PMID: 39187056 DOI: 10.1016/j.exer.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| | - Matus Rehak
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany; Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Bosma EK, Darwesh S, Habani YI, Cammeraat M, Serrano Martinez P, van Breest Smallenburg ME, Zheng JY, Vogels IMC, van Noorden CJF, Schlingemann RO, Klaassen I. Differential roles of eNOS in late effects of VEGF-A on hyperpermeability in different types of endothelial cells. Sci Rep 2023; 13:21436. [PMID: 38052807 PMCID: PMC10698188 DOI: 10.1038/s41598-023-46893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Yasmin I Habani
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maxime Cammeraat
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Mathilda E van Breest Smallenburg
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Wang M, Wang L, Gong Y, Li Q, Shao Y, Li X. Study on the Effects of Different anti-VEGF drugs on Fibrovascular Membranes of Proliferative Diabetic Retinopathy. Photodiagnosis Photodyn Ther 2023; 42:103530. [PMID: 37060987 DOI: 10.1016/j.pdpdt.2023.103530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/17/2023]
Abstract
PURPOSE To investigate the effects of different anti-VEGF drugs on fibrovascular membranes (FVM) in proliferative diabetic retinopathy (PDR). In addition, in vitro model was used to simulate the intraocular fibroblasts barrier to explore the penetration of different anti-VEGF drugs. METHODS 24 eyes from 24 PDR patients with FVM were recruited for this prospective observational study. The patients were randomized to receive one of three anti-VEGF drugs (Ranibizumab, Conbercept, or Aflibercept). Then neovascular structures were assessed by optical coherence tomography angiography (OCTA) before intravitreal injection (pre-IVT) and 1, 2, and 3 days after intravitreal injection (post-IVT). The changes in vessels area (VSA), vessels percentage area (VPA), junction density (JD), and average lacunarity (AL) were analyzed by using the image processing software Angiotool. In vitro penetrating model with fibroblasts barrier was used to compare the effects of the three drugs on human retinal vascular endothelial cells (HRVECs) over 3 days by Cell proliferation measurement. Moreover, the drug concentrations in the penetrating model were detected by liquid chromatography-mass spectrometry (LC-MS). RESULTS The VSA, VPA, and JD all decreased, while the AL increased in Ranibizumab group(n=8), Conbercept group (n=8), and Aflibercept group (n=8) within 3 days (P<0.05). Meanwhile, under the condition of the same amount of substance, the inhibition effect of Ranibizumab on HRVEC was the strongest in the penetrating model evaluated by CCK8 absorbance experiments of HRVECs (FCCK8=6.493, PCCK8= 0.0051), and the number of transmembrane molecules in the Ranibizumab group was also the largest within 3 days (F=8.209, P=0.0006) among the three groups. CONCLUSION Angiotool is feasible to reconstruct the neovascular structure on the FVM in OCTA images. The three different anti-VEGF drugs can significantly reduce the vascular area and density on the proliferating membranes, and there is no significant difference in the anti-neovascularization among the three drugs clinically. However, small molecule drug is more penetrating and move faster across membranes in vitro cell model. CLINICAL TRIAL REGISTRATION This trial is registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn, registration number ChiCTR2300067476).
Collapse
Affiliation(s)
- Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Linni Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yi Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Qingbo Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China; Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300384, China; Eye Institute and School of Optometry, Tianjin 300384, China; Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| |
Collapse
|
4
|
Deissler HL, Busch C, Wolf A, Rehak M. Beovu, but not Lucentis impairs the function of the barrier formed by retinal endothelial cells in vitro. Sci Rep 2022; 12:12493. [PMID: 35864147 PMCID: PMC9304347 DOI: 10.1038/s41598-022-16770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Because rare, but severe adverse effects, i.e. retinal vasculitis or retinal vein occlusion, have been observed after repetitive intravitreal injections of VEGF-A-binding single-chain variable fragment brolucizumab (Beovu), we investigated its possible impact on the barrier formed by immortalized bovine retinal endothelial cells (iBREC) in comparison to that of the VEGF-A-binding Fab fragment ranibizumab (Lucentis). As a measure of stability of the barrier formed by a confluent monolayer of iBREC, we determined the cell index over seven days by continuous electric cell-substrate impedance measurements: Beovu but not Lucentis indeed significantly lowered the cell index, evident about 1.5 days after its addition, pointing to barrier impairment. Early after addition of Beovu, amounts of the integrins α5 and β1-subunits of the fibronectin receptor-had changed in opposite ways, suggesting an effect on cell adhesion due to hindered dimer formation. After exposure for eight days to Beovu, levels of claudin-1-an essential part of the iBREC barrier-were significantly lower, less claudin-1 was located at the plasma membrane after exposure to the VEGF-A antagonist for five days. Beovu did not induce secretion of inflammatory cytokines or VEGF-A. Interestingly, polysorbate-80-component of Beovu-but not polysorbate-20-in Lucentis-slightly, but significantly lowered the cell index, also associated with reduced claudin-1 expression. In summary, our results indicate that Beovu changes the behavior of retinal endothelial cells, thus providing an alternative "non-immunological" explanation for the most relevant of observed side effects.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany. .,Department of Ophthalmology, Justus-Liebig-University Giessen, Friedrichstrasse 18, 35392, Giessen, Germany.
| | - Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Armin Wolf
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany
| | - Matus Rehak
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany.,Department of Ophthalmology, Justus-Liebig-University Giessen, Friedrichstrasse 18, 35392, Giessen, Germany
| |
Collapse
|
5
|
Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A 165 No Longer Depends on the Growth Factor's Presence. Biomolecules 2022; 12:biom12050734. [PMID: 35625661 PMCID: PMC9138398 DOI: 10.3390/biom12050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a measure of permeability—was persistently reduced by exposure to the growth factor. Late after addition of VEGF-A165 protein levels of claudin-1 and CD49e were significantly lower, those of CD29 significantly higher, and the plasmalemma vesicle associated protein was no longer detected. Nuclear levels of β-catenin were only elevated on day two. Extracellular levels of VEGF-A—measured by ELISA—were very low. Similar to the binding of the growth factor by brolucizumab, inhibition of VEGFR2 by tyrosine kinase inhibitors tivozanib or nintedanib led to complete, although transient, recovery of the low cell index when added early, though was inefficient when added three or six days later. Additional inhibition of other receptor tyrosine kinases by nintedanib was similarly unsuccessful, but additional blocking of c-kit by tivozanib led to sustained recovery of the low cell index, an effect observed only when the inhibitor was added early. From these data, we conclude that several days after the addition of VEGF-A165 to iBREC, barrier dysfunction is mainly sustained by increased paracellular flow and impaired adhesion. Even more important, these changes are most likely no longer VEGF-A-controlled.
Collapse
|