1
|
Lin F, Yan L, Yuan X, Yang X, Yang X, Yang Y, Ma L, Wei L, Li D. Implications of Raftlin in different diseases: from molecular biology to diagnostic value. Biomark Med 2025:1-9. [PMID: 39840913 DOI: 10.1080/17520363.2025.2453411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells. The protein also effectuates poly(I:C) internalization into TLR3-positive endosomes in dendritic and epithelial cells through clathrin binding, thereby affecting interferon-β production. In addition, Raftlin controls the vascular endothelial cells and participates in cell growth and proliferation. Recent studies have indicated Raftlin to be a novel biomarker for the diagnosis due to its upregulated expression in malignant diseases. In this integrated study, we present the biological functions of Raftlin and its expression to provide a theoretical basis for the prevention, diagnosis, and treatment of various diseases.
Collapse
Affiliation(s)
- Fugui Lin
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Dehong Li
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Zou J, Wu B, Tao Y, Liu Z, Zhao H, Wang P, Liang Y, Qu J, Zhang S. Inhibition of the rapamycin-insensitive mTORC1 /4E-BP1 axis attenuates TGF-β1-induced fibrotic response in human Tenon's fibroblasts. Exp Eye Res 2024; 244:109927. [PMID: 38750784 DOI: 10.1016/j.exer.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-β1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-β1 for 24 h, followed by treatment with 10 μM CZ415 for additional 24 h. Rapamycin (10 μM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-β1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-β1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-β1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-β1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.
Collapse
Affiliation(s)
- Jiayu Zou
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Binrong Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yan Tao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Zuimeng Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Huanyu Zhao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Pin Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Liang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China; Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China.
| | - Shaodan Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China; Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Lee SS, Nagar S, Rajagopalan L, Orilla W, Csaky KG, Almazan A, Yang L, Robinson MR. Using a Novel, Subconjunctival, Sustained-Release Mitomycin C Formulation in a Rabbit Model of Filtration Surgery with Gel Stent Implantation. J Ocul Pharmacol Ther 2024; 40:297-308. [PMID: 38687355 PMCID: PMC11296147 DOI: 10.1089/jop.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024] Open
Abstract
Purpose: To investigate gel stent implantation with and without intraoperative sustained-release mitomycin C (MMC SR) in a rabbit model for gel stent implantation, and to examine aqueous humor outflow (AHO) postimplantation. Methods: Four groups of rabbits were included. Group 1 was untreated (control). Groups 2, 3, and 4 received the gel stent without MMC, with MMC solution (subconjunctival injection), and with MMC SR (subconjunctival injection), respectively. Intraocular pressure (IOP) and AHO were assessed via tonometry and indocyanine green-based angiography, respectively. The main efficacy measure was change in IOP from baseline. Results: Following gel stent implantation, Groups 2, 3, and 4 maintained ≥20% IOP reduction (response) for a median duration of 1 week, 6.5 weeks, and 30 weeks, respectively. Angiography showed normal aqueous humor drainage (Group 1) beginning at the perilimbal trabecular plexus and continuing posteriorly to episcleral outflow vessels. Following implantation, drainage occurred preferentially and directly into the subconjunctival bleb. Conclusions: Gel stent implantation with MMC SR was most effective in achieving sustained, long-term IOP reduction in the rabbit model, compared with implantation with or without MMC solution. Bleb presence and the postimplantation aqueous angiography results indicated redirection of the AHO to the subconjunctival vasculature and presumed lymphatics, suggesting efficient glaucoma filtration to lower IOP in this model. This rabbit model and aqueous angiography may help refine understanding of the mechanism of action of minimally invasive glaucoma surgeries and ultimately translate to improved surgical devices and procedures for patients with glaucoma.
Collapse
Affiliation(s)
- Susan S. Lee
- Allergan, an AbbVie company, Irvine, California, USA
| | - Saumya Nagar
- Allergan, an AbbVie company, Irvine, California, USA
| | | | | | - Karl G. Csaky
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | | | - Liuqing Yang
- Allergan, an AbbVie company, Irvine, California, USA
| | | |
Collapse
|
5
|
Ciociola EC, Fernandez E, Kaufmann M, Klifto MR. Future directions of glaucoma treatment: emerging gene, neuroprotection, nanomedicine, stem cell, and vascular therapies. Curr Opin Ophthalmol 2024; 35:89-96. [PMID: 37910173 DOI: 10.1097/icu.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The aim of this article is to summarize current research on novel gene, stem cell, neuroprotective, nanomedicine, and vascular therapies for glaucoma. RECENT FINDINGS Gene therapy using viral vectors and siRNA have been shown to reduce intraocular pressure by altering outflow and production of aqueous humor, to reduce postsurgical fibrosis with few adverse effects, and to increase retinal ganglion cell (RGC) survival in animal studies. Stem cells may treat glaucoma by replacing or stimulating proliferation of trabecular meshwork cells, thus restoring outflow facility. Stem cells can also serve a neuroprotective effect by differentiating into RGCs or preventing RGC loss via secretion of growth factors. Other developing neuroprotective glaucoma treatments which can prevent RGC death include nicotinamide, the NT-501 implant which secretes ciliary neurotrophic factor, and a Fas-L inhibitor which are now being tested in clinical trials. Recent studies on vascular therapy for glaucoma have focused on the ability of Rho Kinase inhibitors and dronabinol to increase ocular blood flow. SUMMARY Many novel stem cell, gene, neuroprotective, nanomedicine, and vascular therapies have shown promise in preclinical studies, but further clinical trials are needed to demonstrate safety and efficacy in human glaucomatous eyes. Although likely many years off, future glaucoma therapy may take a multifaceted approach.
Collapse
Affiliation(s)
| | | | | | - Meredith R Klifto
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Lin HZ, Wang JH, Lee YC. Factors Associated with the Efficacy of XEN Gel Implant. Ophthalmol Ther 2024; 13:597-614. [PMID: 38180631 PMCID: PMC10787716 DOI: 10.1007/s40123-023-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
INTRODUCTION Microinvasive glaucoma surgery (MIGS) is a growing trend, and XEN gel implant is one of the most effective types of MIGS. This study aimed to examine factors associated with the surgical success of XEN gel implants. METHODS This retrospective cohort study enrolled patients with glaucoma receiving XEN implantation alone or combined with phacoemulsification (PHACOXEN) with a follow-up period of more than 6 months at Hualien Tzu Chi Hospital, Taiwan. If intraocular pressure (IOP) elevated above 20 mmHg during the follow-up, needling or open revision was performed. The primary outcome measures included IOP and the number of glaucoma medications. RESULTS Male patients had lower postoperative IOP; male patients and higher preoperative IOP were associated with higher IOP change rates, and older patients had a higher chance of achieving IOP < 18 mmHg and being medication-free at months 12, 24, and 36. The Kaplan-Meier curve showed that the probability of free-of-rescue intervention over the follow-up period was not different between the XEN alone and the PHACOXEN group (P = 0.859). Both needling and open revision were effective rescue interventions, but open revision had a higher chance of achieving IOP ≤ 18 mmHg and being medication-free (P = 0.031) and required less medication afterward (P = 0.044). Older age (P = 0.013) and male patients (P = 0.022) had a lower IOP after rescue interventions. Compared with open revision, needling was associated with higher IOP (P = 0.048) and more required medications (P = 0.048). CONCLUSIONS XEN alone and PHACOXEN had comparable surgical outcomes, whereas open revision had a better IOP lowering effect than needling as a rescue intervention. Male and older patients had better surgical results in primary XEN implantations and rescue interventions.
Collapse
Affiliation(s)
- Hong-Zin Lin
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Chung-Yung Road, Hualien, 97002, Taiwan, ROC
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Chieh Lee
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Chung-Yung Road, Hualien, 97002, Taiwan, ROC.
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
7
|
Lee J, Honjo M, Aihara M. A MEK inhibitor arrests the cell cycle of human conjunctival fibroblasts and improves the outcome of glaucoma filtration surgery. Sci Rep 2024; 14:1871. [PMID: 38253821 PMCID: PMC10803501 DOI: 10.1038/s41598-024-52359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Better agents are needed to improve glaucoma filtration surgery outcomes compared to current ones. The purpose of this study is to determine whether mitogen-activated protein kinase kinase (MEK) inhibitors can effectively arrest the cell cycle of human conjunctival fibroblasts (HCFs) and inhibit the formation of fibrosis and scarring following glaucoma filtration surgery. A cell counting kit‑8 assay revealed that the MEK inhibitor PD0325901 exhibited concentration-dependent growth inhibition of HCFs. Quantitative PCR, immunocytochemistry, and western blotting demonstrated decreased expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and increased expression of p27 in HCFs treated with PD0325901. Flow cytometry indicated that PD0325901 arrested the cell cycle of HCFs in the G0/1 phase. The cell-migration assay showed that HCF migration rate was significantly suppressed by PD0325901 exposure. Rabbits were divided into PD0325901-treatment and control groups, and glaucoma filtration surgery was performed. Although intraocular pressure did not differ between PD0325901-treatment and control groups, bleb height was greater in the treatment group. Histopathological evaluation revealed that fibrotic changes were significantly attenuated in the PD0325901-treatment group compared to the control group. In conclusion, the MEK inhibitor impedes HCF proliferation via cell-cycle arrest and may be beneficial for glaucoma filtration surgery by reducing bleb scarring.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
van Mechelen RJS, Wolters JEJ, Fredrich S, Bertens CJF, Gijbels MJJ, Schenning APHJ, Pinchuk L, Gorgels TGMF, Beckers HJM. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci 2023; 23:e2300075. [PMID: 37249127 DOI: 10.1002/mabi.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Sebastian Fredrich
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Marion J J Gijbels
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Technical University of Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Leonard Pinchuk
- InnFocus Inc. a Santen company, 12415 S.W. 136 Avenue, Miami, FL, 33186, USA
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
9
|
Eissa NG, Eldehna WM, Abdelazim EB, Eissa RA, Mohamed HH, Diab NH, El Hassab MA, Elkaeed EB, Elsayed ZM, Sabet MA, Bakr MH, Aboelela A, Abdelshafi NA, Kamoun EA, Supuran CT, Elsabahy M, Allam AA. Morphologic Design of Nanogold Carriers for a Carbonic Anhydrase Inhibitor: Effect on Ocular Retention and Intraocular Pressure. Int J Pharm 2023:123161. [PMID: 37379891 DOI: 10.1016/j.ijpharm.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Morphologic design of nanomaterials for a diversity of biomedical applications is of increasing interest. The aim of the current study is to construct therapeutic gold nanoparticles of different morphologies and investigate their effect on ocular retention and intraocular pressure in a glaucoma rabbit model. Poly(lactic-co-glycolic acid) (PLGA)-coated nanorods and nanospheres have been synthesized and loaded with carbonic anhydrase inhibitor (CAI), and characterized in vitro for their size, zeta potential and encapsulation efficiency. Nanosized PLGA-coated gold nanoparticles of both morphologies demonstrated high entrapment efficiency (˃ 98%) for the synthesized CAI and the encapsulation of the drug into the developed nanoparticles was confirmed via Fourier transform-infrared spectroscopy. In vivo studies revealed a significant reduction in intraocular pressure upon instillation of drug-loaded nanogold formulations compared to the marketed eye drops. Spherical nanogolds exhibited a superior efficacy compared to the rod-shaped counterparts, probably due to the enhanced ocular retention of spherical nanogolds within collagen fibers of the stroma, as illustrated by transmission electron microscopy imaging. Normal histological appearance was observed for the cornea and retina of the eyes treated with spherical drug-loaded nanogolds. Hence, incorporation of a molecularly-designed CAI into nanogold of tailored morphology may provide a promising strategy for management of glaucoma.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Esraa B Abdelazim
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Rana A Eissa
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Hend H Mohamed
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Nadeen H Diab
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Marwa A Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 1183, Egypt; Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute, the City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud Elsabahy
- Badr University in Cairo Research Center and School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
| | - Ayat A Allam
- Pharmaceutics Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt; Pharmaceutics Department, Faculty of Pharmacy, Assiut university, Assiut 71526, Egypt
| |
Collapse
|
10
|
van Mechelen RJS, Wolters JEJ, Herfs M, Bertens CJF, Gijbels M, Pinchuk L, Gorgels TGMF, Beckers HJM. Wound Healing Response After Bleb-Forming Glaucoma Surgery With a SIBS Microshunt in Rabbits. Transl Vis Sci Technol 2022; 11:29. [PMID: 36018582 PMCID: PMC9428362 DOI: 10.1167/tvst.11.8.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The PreserFlo MicroShunt is an innovative implant for the surgical treatment of glaucoma. Although usually effective, surgeries can still fail due to fibrosis. This study was conducted to gain insight into the histological aspects of the fibrotic response and find potential targets to reduce postoperative fibrosis. Methods Fifteen New Zealand White rabbits were implanted with a microshunt and followed up for 40 days. Animals were euthanized at postoperative days (PODs) 1, 5, and 40 to collect eyes for histological evaluation. Bleb formation and ocular health were assessed by slit-lamp (SL) biomicroscopy and optical coherence tomography (OCT). Intraocular pressure (IOP) was measured using rebound tonometry. Results Blebs failed after approximately 2 weeks based on bleb survival and IOP measurements. No severe complications were observed with OCT and SL. Histology revealed a wide variety of cells, in the bleb and around the microshunt, including polymorphonuclear leucocytes (PMNs), myofibroblasts, and foreign body giant cells, at different PODs. Conclusions Implantation of a poly(styrene-b-isobutylene-b-styrene) microshunt in rabbits resulted in the occurrence of a wide variety of cells during the wound-healing response. Future research should further elucidate the potential of these (earlier often overlooked) cells to target the fibrotic response in vivo—for example, by developing novel antifibrotic drugs, methods for sustained delivery of medications, or augmenting material properties. Translational Relevance Current antifibrotic therapies aim to inhibit myofibroblasts; however, a wide variety of cells are involved in the fibrotic response. Future research focusing on these cells could offer novel methods for reducing the fibrotic response after glaucoma surgery.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Ophthalmology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Chemelot Institute for Science and Technology, Maastricht, the Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Ophthalmology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Chemelot Institute for Science and Technology, Maastricht, the Netherlands
| | - Marjolein Herfs
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Ophthalmology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Chemelot Institute for Science and Technology, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Ophthalmology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Chemelot Institute for Science and Technology, Maastricht, the Netherlands
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|