1
|
Asencio-Durán M, Fernández-Gutiérrez E, Larrañaga-Cores M, Klein-Burgos C, Dabad-Moreno JV, Capote-Díez M. Ocular side effects of oncological therapies: Review. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2024; 99:109-132. [PMID: 37949110 DOI: 10.1016/j.oftale.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
With the advance of cancer therapy in recent years, the knowledge of the mechanisms involved in this disease has increased, which has meant an increase in the quality of life and survival of patients with tumor pathologies previously considered incurable or refractory to treatment. The number of drugs used has increased exponentially in number, and although the implicit toxicity is lower than that of conventional antineoplastic therapy, they lead to the appearance of new associated adverse effects that the ophthalmologist must recognize and manage.
Collapse
Affiliation(s)
- M Asencio-Durán
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain.
| | - E Fernández-Gutiérrez
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - M Larrañaga-Cores
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - C Klein-Burgos
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - J V Dabad-Moreno
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| | - M Capote-Díez
- Servicio de Oftalmología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del Hospital La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
2
|
Kodetová M, Švojgr K, Širc J, Vaněček J, Pochop P. Therapy for Vitreous Seeding Caused by Retinoblastoma. A Review. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2024; 80:123-129. [PMID: 38538290 DOI: 10.31348/2023/35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Retinoblastoma is the most common primary malignant intraocular tumor in children. Seeding, specifically the dispersion of the tumor into the adjacent compartments, represents a major parameter determining the degree of retinoblastoma according to the International Classification of Retinoblastoma. In this article we focused on vitreous seeding, one of the main limiting factors in the successful "eye preservation treatment" of retinoblastoma. This article presents an overview of the history of vitreous seeding of retinoblastoma, established treatment procedures and new-research modalities. The introduction of systemic chemotherapy in the treatment of retinoblastoma at the end of the 1990s represented a significant breakthrough, which enabled the progressive abandonment of radiotherapy with its attendant side effects. However, the attained concentrations of chemotherapeutics in the vitreous space during systemic chemotherapy are not sufficient for the treatment of vitreous seeding, and the toxic effects of systemic chemotherapy are not negligible. A significant change came with the advent of chemotherapy in situ, with the targeted administration of chemotherapeutic drugs, namely intra-arterial and intravitreal injections, contributing to the definitive eradication of external radiotherapy and a reduction of systemic chemotherapy. Although vitreous seeding remains the most common reason for the failure of intra-arterial chemotherapy, this technique has significantly influenced the original treatment regimen of children with retinoblastoma. However, intravitreal chemotherapy has made the greatest contribution to increasing the probability of preservation of the eyeball and visual functions in patients with advanced findings. Novel local drug delivery modalities, gene therapy, oncolytic viruses and immunotherapy from several ongoing preclinical and clinical trials may represent promising approaches in the treatment of vitreous retinoblastoma seeding, though no clinical trials have yet been completed for routine use.
Collapse
|
3
|
Abramson DH, Francis JH. Intravitreal Topotecan 90 µg for Recurrent Solid Retinoblastoma Tumors Is Effective and Not Toxic. J Pediatr Ophthalmol Strabismus 2023; 60:e16-e18. [PMID: 36975114 DOI: 10.3928/01913913-20230110-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The authors report on the safety and efficacy of 90 µg/0.18 cc of intravitreal topotecan for recurrent solid retinal tumors in retinoblastoma. Topotecan 90 µg was injected intravitreally in three retinoblastoma cases that progressed after prior therapy. Safety was monitored with retinal examinations under anesthesia and 30-Hz flicker electroretinograms. There was complete disappearance of recurrent retinal tumors with only one injection of 90 µg of intravitreal topotecan without any toxicity. Intravitreal 90 µg caused prompt regression of retinal tumors in three children who had progression of their retinoblastoma after prior therapy. No toxicity was seen. This is the first report of intravitreal 90 µg in humans and the first report of responses of retinal tumors from intravitreal topotrecan. [J Pediatr Ophthalmol Strabismus. 2023;60(2):e16-e18.].
Collapse
|
4
|
Kodetova M, Hobzova R, Sirc J, Uhlik J, Dunovska K, Svojgr K, Cocarta AI, Felsoova A, Slanar O, Sima M, Kozak I, Pochop P. The Role of Cryotherapy in Vitreous Concentrations of Topotecan Delivered by Episcleral Hydrogel Implant. Pharmaceutics 2022; 14:pharmaceutics14050903. [PMID: 35631489 PMCID: PMC9144907 DOI: 10.3390/pharmaceutics14050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
Transscleral diffusion delivery of chemotherapy is a promising way to reach the vitreal seeds of retinoblastoma, the most common intraocular malignancy in childhood. In this in vivo study, the delivery of topotecan via lens-shaped, bi-layered hydrogel implants was combined with transconjunctival cryotherapy to assess whether cryotherapy leads to higher concentrations of topotecan in the vitreous. The study included 18 New Zealand albino rabbits; nine rabbits received a topotecan-loaded implant episclerally and another nine rabbits received transconjunctival cryotherapy superotemporally 2 weeks before implant administration. Median vitreous total topotecan exposures (area under the curve, AUC) were 455 ng·h/mL for the cryotherapy group and 281 ng·h/mL for the non-cryotherapy group, and were significantly higher in the cryotherapy group, similar to maximum levels. Median plasma AUC were 50 ng·h/mL and 34 ng·h/mL for the cryotherapy and non-cryotherapy groups, respectively, with no statistically significant differences between them. In both groups, AUC values in the vitreous were significantly higher than in plasma, with plasma exposure at only approximately 11–12% of the level of vitreous exposure. The results confirmed the important role of the choroidal vessels in the pharmacokinetics of topotecan during transscleral administration and showed a positive effect of cryotherapy on intravitreal penetration, resulting in a significantly higher total exposure in the vitreous.
Collapse
Affiliation(s)
- Martina Kodetova
- Department of Ophthalmology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; (M.K.); (P.P.)
| | - Radka Hobzova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
- Correspondence:
| | - Jiri Uhlik
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (J.U.); (A.F.)
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Karel Svojgr
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Ana-Irina Cocarta
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
| | - Andrea Felsoova
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (J.U.); (A.F.)
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Ondrej Slanar
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (O.S.); (M.S.)
| | - Martin Sima
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (O.S.); (M.S.)
| | - Igor Kozak
- Moorfields Eye Hospital, Abu Dhabi P.O. Box 62807, United Arab Emirates;
| | - Pavel Pochop
- Department of Ophthalmology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; (M.K.); (P.P.)
| |
Collapse
|