1
|
Sánchez-Puebla L, López-Cuenca I, Salobrar-García E, González-Jiménez M, Arias-Vázquez A, Matamoros JA, Ramírez AI, Fernández-Albarral JA, Elvira-Hurtado L, Saido TC, Saito T, Nieto-Vaquero C, Cuartero MI, Moro MA, Salazar JJ, de Hoz R, Ramírez JM. Retinal Vascular and Structural Changes in the Murine Alzheimer's APPNL-F/NL-F Model from 6 to 20 Months. Biomolecules 2024; 14:828. [PMID: 39062542 PMCID: PMC11274728 DOI: 10.3390/biom14070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) may manifest retinal changes preceding brain pathology. A transversal case-control study utilized spectral-domain OCT angiography (SD-OCTA) and Angio-Tool software 0.6a to assess retinal vascular structures and OCT for inner and outer retina thickness in the APPNL-F/NL-F AD model at 6, 9, 12, 15, 17, and 20 months old. Comparisons to age-matched wild type (WT) were performed. The analysis focused on the three vascular plexuses using AngiooTool and on retinal thickness, which was represented with the Early Treatment Diabetic Retinopathy Study (ETDRS) sectors. Compared to WT, the APPNL-F/NL-F group exhibited both vascular and structural changes as early as 6 months persisting and evolving at 15, 17, and 20 months. Significant vascular alterations, principally in the superficial vascular complex (SVC), were observed. There was a significant decrease in the vessel area and the total vessel length in SVC, intermediate, and deep capillary plexus. The inner retina in the APPNL-F/NL-F group predominantly decreased in thickness while the outer retina showed increased thickness in most analyzed time points compared to the control group. There are early vascular and structural retinal changes that precede the cognitive changes, which appear at later stages. Therefore, the natural history of the APPNL-F/NL-F model may be more similar to human AD than other transgenic models.
Collapse
Affiliation(s)
- Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - María González-Jiménez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
| | - Alberto Arias-Vázquez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, Wako 351-0198, Japan;
| | - Takashi Saito
- Institute of Brain Science, Faculty of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan;
| | - Carmen Nieto-Vaquero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, 28029 Madrid, Spain; (C.N.-V.); (M.A.M.)
- Hospital 12 de Octubre Research Institute (i + 12), 28029 Madrid, Spain;
- University Institute for Research in Neurochemistry, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - María I. Cuartero
- Hospital 12 de Octubre Research Institute (i + 12), 28029 Madrid, Spain;
- University Institute for Research in Neurochemistry, Complutense University of Madrid (UCM), 28040 Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - María A. Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, 28029 Madrid, Spain; (C.N.-V.); (M.A.M.)
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (L.S.-P.); (I.L.-C.); (E.S.-G.); (M.G.-J.); (A.A.-V.); (J.A.M.); (A.I.R.); (J.A.F.-A.); (L.E.-H.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Buscho SE, Xia F, Shi S, Lin JL, Szczesny B, Zhang W, Motamedi M, Liu H. Non-Invasive Evaluation of Retinal Vascular Alterations in a Mouse Model of Optic Neuritis Using Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography. Cells 2023; 12:2685. [PMID: 38067113 PMCID: PMC10705764 DOI: 10.3390/cells12232685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Optic neuritis, a characteristic feature of multiple sclerosis (MS), involves the inflammation of the optic nerve and the degeneration of retinal ganglion cells (RGCs). Although previous studies suggest that retinal blood flow alterations occur during optic neuritis, the precise location, the degree of impairment, and the underlying mechanisms remain unclear. In this study, we utilized two emerging non-invasive imaging techniques, laser speckle flowgraphy (LSFG) and optical coherence tomography angiography (OCTA), to investigate retinal vascular changes in a mouse model of MS, known as experimental autoimmune encephalomyelitis (EAE). We associated these changes with leukostasis, RGC injury, and the overall progression of EAE. LSFG imaging revealed a progressive reduction in retinal blood flow velocity and increased vascular resistance near the optic nerve head in the EAE model, indicating impaired ocular blood flow. OCTA imaging demonstrated significant decreases in vessel density, number of junctions, and total vessel length in the intermediate and deep capillary plexus of the EAE mice. Furthermore, our analysis of leukostasis revealed a significant increase in adherent leukocytes in the retinal vasculature of the EAE mice, suggesting the occurrence of vascular inflammation in the early development of EAE pathology. The abovechanges preceded or were accompanied by the characteristic hallmarks of optic neuritis, such as RGC loss and reduced visual acuity. Overall, our study sheds light on the intricate relationship between retinal vascular alterations and the progression of optic neuritis as well as MS clinical score. It also highlights the potential for the development of image-based biomarkers for the diagnosis and monitoring of optic neuritis as well as MS, particularly in response to emerging treatments.
Collapse
Affiliation(s)
- Seth E. Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Jonathan L. Lin
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.E.B.); (F.X.); (S.S.); (J.L.L.); (B.S.); (W.Z.); (M.M.)
| |
Collapse
|