1
|
Zdrojowy-Wełna A, Valassi E. Cushing's Syndrome in the Elderly. Exp Clin Endocrinol Diabetes 2024. [PMID: 38698635 DOI: 10.1055/a-2317-8821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Management of Cushing's syndrome (CS) can be particularly challenging in older patients, compared with younger individuals, due to the lack of several clinical features associated with cortisol excess along with a greater burden of associated comorbidities. Moreover, the interpretation of diagnostic tests could be influenced by age-related physiological changes in cortisol secretion. While mortality is higher and quality of life is more impaired in the elderly with CS as compared with the younger, there is currently no agreement on the most effective therapeutic options in aged individuals, and safety data concerning medical treatment are scanty. In this review, we summarize the current knowledge about age-related differences in CS etiology, clinical presentation, treatment, and outcomes and describe the potential underlying mechanisms.
Collapse
Affiliation(s)
- Aleksandra Zdrojowy-Wełna
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wroclaw, Poland
- Endocrinology Department, Wroclaw University Hospital, Wroclaw, Poland
| | - Elena Valassi
- Endocrinology and Nutrition Department, Germans Trias i Pujol Hospital and Research Institute, Badalona, Spain
- School of Medicine, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| |
Collapse
|
2
|
Rehman SU, Ali R, Zhang H, Zafar MH, Wang M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol 2023; 14:1252089. [PMID: 38046946 PMCID: PMC10691278 DOI: 10.3389/fphys.2023.1252089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Leucine, a branched-chain amino acid, is essential in regulating animal growth and development. Recent research has uncovered the mechanisms underlying Leucine's anabolic effects on muscle and other tissues, including its ability to stimulate protein synthesis by activating the mTORC1 signaling pathway. The co-ingestion of carbohydrates and essential amino acids enhances Leucine's anabolic effects. Moreover, Leucine has been shown to benefit lipid metabolism, and insulin sensitivity, making it a promising strategy for preventing and treating metabolic diseases, including type 2 diabetes and obesity. While emerging evidence indicates that epigenetic mechanisms may mediate Leucine's effects on growth and development, more research is needed to elucidate its mechanisms of action fully. Specific studies have demonstrated that Leucine promotes muscle growth and metabolic health in animals and humans, making it a promising therapeutic agent. However, it is essential to note that Leucine supplementation may cause digestive issues or interact with certain medications, and More study is required to determine definitively optimal dosages. Therefore, it is important to understand how Leucine interacts with other nutrients, dietary factors, and lifestyle habits to maximize its benefits. Overall, Leucine's importance in human nutrition is far-reaching, and its potential to prevent muscle loss and enhance athletic performance warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Park HY, Choi HR, Kim YB, Oh SK, Kim T, Yang HS, In J. Chronic exposure to dexamethasone may not affect sugammadex reversal of rocuronium-induced neuromuscular blockade: an in vivo study on rats. Anesth Pain Med (Seoul) 2023; 18:275-283. [PMID: 37468197 PMCID: PMC10410550 DOI: 10.17085/apm.23021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Chronic glucocorticoid exposure is associated with resistance to nondepolarizing neuromuscular blocking agents. Therefore, we hypothesized that sugammadex-induced recovery would occur more rapidly in subjects exposed to chronic dexamethasone compared to those who were not exposed. This study evaluated the sugammadex-induced recovery profile after neuromuscular blockade (NMB) in rats exposed to chronic dexamethasone. METHODS Sprague-Dawley rats were allocated to three groups (dexamethasone, control, and pair-fed group) for the in vivo study. The mice received daily intraperitoneal dexamethasone injections (500 μg/kg) or 0.9% saline for 15 days. To achieve complete NMB, 3.5 mg/kg rocuronium was administered on the sixteenth day. The recovery time to a train-of-four ratio ≥ 0.9 was measured to evaluate the complete recovery following the sugammadex injection. RESULTS Among the groups, no significant differences were observed in the recovery time to a train-of-four ratio ≥ 0.9 following sugammadex administration (P = 0.531). The time to the second twitch of the train-of-four recovery following rocuronium administration indicated that the duration of NMB was significantly shorter in Group D than that in Groups C and P (P = 0.001). CONCLUSIONS Chronic exposure to dexamethasone did not shorten the recovery time of sugammadex-induced NMB reversal. However, the findings of this study indicated that no adjustments to sugammadex dosage or route of administration is required, even in patients undergoing long-term steroid treatment.
Collapse
Affiliation(s)
| | - Hey Ran Choi
- Department of Anesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Yong Beom Kim
- Department of Anesthesia and Pain Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Seok Kyeong Oh
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Taehoon Kim
- Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Hong Seuk Yang
- Department of Anesthesiology and Pain Medicine, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Junyong In
- Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
4
|
Alev K, Aru M, Vain A, Pehme A, Kaasik P, Seene T. Short-time recovery skeletal muscle from dexamethasone-induced atrophy and weakness in old female rats. Clin Biomech (Bristol, Avon) 2022; 100:105808. [PMID: 36368193 DOI: 10.1016/j.clinbiomech.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several pathological conditions (atrophy, dystrophy, spasticity, inflammation) can change muscle biomechanical parameters. Our previous works have shown that dexamethasone treatment changes skeletal muscle tone, stiffness, elasticity. Exercise training may oppose the side effects observed during dexamethasone treatment. The purpose of this study was to examine the changes in biomechanical parameters (tone, stiffness, elasticity) of skeletal muscle occurring during dexamethasone treatment and subsequent short-time recovery from glucocorticoid-induced muscle atrophy and weakness, as well as the effect of mild therapeutic exercise. METHODS 17 old female rats, aged 22 months were used in this study. The hand-held and non-invasive device (MyotonPRO, Myoton Ltd., Tallinn, Estonia) was used to study changes in biomechanical properties of muscle. Additionally, body and muscle mass, hind limb grip strength were assessed. FINDINGS Results showed that dexamethasone treatment alters muscle tone, stiffness and elasticity. During 20-day recovery period all measured parameters gradually improved towards the average baseline, however, remaining significantly lower than these values. The body and muscle mass, hind limb grip strength of the rats decreased considerably in the groups that received glucocorticoids. After 20 days of recovery, hind limb grip strength of the animals was slightly lower than the baseline value and mild therapeutic exercise had a slight but not significant effect on hind limb grip strength. Biomechanical parameters improved during the recovery period, but only dynamic stiffness and decrement retuned to baseline value. INTERPRETATION The study results show that monitoring muscle biomechanical parameters allows to assess the recovery of atrophied muscle from steroid myopathy.
Collapse
Affiliation(s)
- Karin Alev
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia.
| | - Maire Aru
- Clinical Research Centre University of Tartu, Estonia
| | - Arved Vain
- Institute of Physics, Faculty of Science and Technology University Tartu, Estonia
| | - Ando Pehme
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| | - Priit Kaasik
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| | - Teet Seene
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine University of Tartu, Estonia
| |
Collapse
|
5
|
Mose M, Møller N, Jessen N, Mikkelsen UR, Christensen B, Rakvaag E, Hartmann B, Holst JJ, Jørgensen JOL, Rittig N. β-Lactoglobulin Is Insulinotropic Compared with Casein and Whey Protein Ingestion during Catabolic Conditions in Men in a Double-Blinded Randomized Crossover Trial. J Nutr 2021; 151:1462-1472. [PMID: 33693737 DOI: 10.1093/jn/nxab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Muscle loss during acute infectious disease is mainly triggered by inflammation, immobilization, and malnutrition. OBJECTIVE The objective was to compare muscle protein kinetics and metabolism following ingestion of the dairy protein supplements β-lactoglobulin (BLG), casein (CAS), and whey (WHE) during controlled catabolic conditions. METHODS We used a randomized crossover design (registered at clinicaltrials.gov as NCT03319550) to investigate 9 healthy male participants [age: 20-40 y; BMI (in kg/m2) 20-30] who were randomly assigned servings of BLG, CAS, or WHE (0.6 g protein/kg, one-third as bolus and two-thirds as sip every 20 min) on 3 separate occasions separated by ∼6-8 wk. The participants received an infusion of lipopolysaccharide (1 ng/kg) combined with 36 h of fasting and bed rest before each study day, mimicking a clinical catabolic condition. The forearm model and isotopic tracer techniques were used to quantify muscle protein kinetics. Muscle biopsy specimens were obtained and intramyocellular signaling investigated using Western blot. RESULTS BLG, CAS, and WHE improved the net balance of phenylalanine (NBphe) from baseline with ∼75% (P < 0.001) with no difference between interventions (primary outcome, P < 0.05). No difference in rates of appearance and disappearance of phenylalanine or in intramyocellular signaling activation was found between interventions (secondary outcomes). The incremental AUC for serum insulin was 62% higher following BLG compared with CAS (P < 0.001) and 30% higher compared with WHE (P = 0.002), as well as 25% higher in WHE compared with CAS (P = 0.006). Following BLG consumption, plasma concentrations of glucose-dependent insulinotropic peptide (GIP) increased 70% compared with CAS (P = 0.001) and increased 34% compared with WHE (P = 0.06). No significant difference was found between WHE and CAS (P = 0.12). CONCLUSION BLG, WHE, and CAS have similar effects on muscle in young male participants during catabolic conditions. BLG showed specific, possibly GIP-dependent, insulinotropic properties, which may have future clinical implications.
Collapse
Affiliation(s)
- Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,NNF Center for Basic Metabolic Research and Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Nikolaj Rittig
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Important determinants to take into account to optimize protein nutrition in the elderly: solutions to a complex equation. Proc Nutr Soc 2020; 80:207-220. [PMID: 33198824 DOI: 10.1017/s0029665120007934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During ageing, skeletal muscle develops anabolic resistance towards the stimulation of protein synthesis induced by dietary amino acids. The stimulation of muscle protein synthesis after food intake remains insufficient, even with a protein intake recommended for healthy adults. This alteration is one of the mechanisms known to be responsible for the decrease of muscle mass and function during ageing, namely sarcopenia. Increasing dietary protein intake above the current RDA(0⋅83 g/kg/d) has been strongly suggested to overcome the anabolic resistance observed. It is also specified that the dietary protein ingested should be of good quality. A protein of good quality is a protein whose amino acid (AA) composition covers the requirement of each AA when ingested at the RDA. However, the biological value of proteins may vary among dietary sources in which AA composition could be unbalanced. In the present review, we suggest that the quality of a dietary protein is also related to several other determinants. These determinants include the speed of digestion of dietary proteins, the presence of specific AA, the food matrix in which the dietary proteins are included, the processes involved in the production of food products (milk gelation and cooking temperature), the energy supply and its nature, and the interaction between nutrients before ingestion. Particular attention is given to plant proteins for nutrition of the elderly. Finally, the timing of protein intake and its association with the desynchronized intake of energetic nutrients are discussed.
Collapse
|
7
|
Mannelli LDC, Micheli L, Lucarini E, Parisio C, Toti A, Tenci B, Zanardelli M, Branca JJV, Pacini A, Ghelardini C. Effects of the Combination of β-Hydroxy-β-Methyl Butyrate and R(+) Lipoic Acid in a Cellular Model of Sarcopenia. Molecules 2020; 25:E2117. [PMID: 32366049 PMCID: PMC7249096 DOI: 10.3390/molecules25092117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
: Sarcopenia is a clinical problem associated with several pathological and non-pathological conditions. The aim of the present research is the evaluation of the pharmacological profile of the leucine metabolite β-hydroxy-β-methyl butyrate (HMB) associated with the natural R(+) stereoisomer of lipoic acid (R(+)LA) in a cellular model of muscle wasting. The C2C12 cell line is used as myoblasts or is differentiated in myotubes, sarcopenia is induced by dexamethasone (DEX). A Bonferroni significant difference procedure is used for a post hoc comparison. DEX toxicity (0.01-300 µM concentration range) is evaluated in myoblasts to measure cell viability and caspase 3 activation after 24 h and 48 h; cell incubation with 1 µM DEX for 48 h is chosen as optimal treatment for decreasing cell viability and increasing caspase 3 activity. R(+)LA or HMB significantly prevents DEX-induced cell mortality; the efficacy is improved when 100 µM R(+)LA is combined with 1 mM HMB. Regarding myoblasts, this combination significantly reduces DEX-evoked O2- production and protein oxidative damage. During the early phase of myotube formation, the mixture preserves the number of myogenin-positive cells, whereas it completely prevents the DEX-dependent damage in a later phase of myotube differentiation (7 days), as evaluated by cell diameter and percentage of multinucleated cells. R(+)LA in association with HMB is suggested for sarcopenia therapy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Elena Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Carmen Parisio
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Alessandra Toti
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Barbara Tenci
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Matteo Zanardelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| | - Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence. Viale Pieraccini 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.P.); (A.T.); (B.T.); (M.Z.); (C.G.)
| |
Collapse
|
8
|
Oh SK, Lim BG, Park S, Yang HS, In J, Kim YB, Choi HR, Lee IO. Effect of protracted dexamethasone exposure and its withdrawal on rocuronium-induced neuromuscular blockade and sugammadex reversal: an ex vivo rat study. Sci Rep 2019; 9:11268. [PMID: 31375743 PMCID: PMC6677897 DOI: 10.1038/s41598-019-47784-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Studies have reported that protracted dexamethasone treatment induces resistance to nondepolarizing neuromuscular blocking agents (NMBAs) and the association with nicotinic acetylcholine receptors in the diaphragm of rats. Here, we investigated the effect of protracted dexamethasone administration on the sensitivity to rocuronium and the recovery profile when reversed by sugammadex; additionally, we observed the recovery period of pharmacodynamic change after withdrawal. Sprague-Dawley rats received daily intraperitoneal injections of dexamethasone or saline for 14 days. On days 1, 3, and 7 after the last dexamethasone treatment (Dexa1, Dexa3, and Dexa7, respectively) or 1 day after saline (control group), the phrenic nerve-hemidiaphragm preparation was dissected for assay. The dose-response curve of rocuronium in Dexa1 was shifted to the right compared to controls, but curves in Dexa3 and Dexa7 were not significantly different. Groups were not significantly different in attaining the train-of-four ratio ≥ 0.9, but the recovery index in Dexa7 was shorter than that in control and Dexa1. Recovery profiles (period of sugammadex reversal) were not correlated with resistance properties but rather with total administered drugs (binding capacity of NMBAs and sugammadex). Protracted dexamethasone exposure induced resistance to rocuronium but seemed to have no effect on sugammadex reversal in the rat diaphragm.
Collapse
Affiliation(s)
- Seok Kyeong Oh
- Department of Anaesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung Gun Lim
- Department of Anaesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungsoo Park
- Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hong Seuk Yang
- Department of Anaesthesiology and Pain Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Junyong In
- Department of Anaesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Yong Beom Kim
- Department of Anaesthesiology and Pain Medicine, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Hey-Ran Choi
- Department of Anaesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Republic of Korea
| | - Il Ok Lee
- Department of Anaesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Jarzaguet M, Polakof S, David J, Migné C, Joubrel G, Efstathiou T, Rémond D, Mosoni L, Dardevet D. A meal with mixed soy/whey proteins is as efficient as a whey meal in counteracting the age-related muscle anabolic resistance only if the protein content and leucine levels are increased. Food Funct 2019; 9:6526-6534. [PMID: 30475369 DOI: 10.1039/c8fo01903g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With aging, skeletal muscle becomes resistant to the anabolic effect of dietary proteins and sarcopenia develops. Animal proteins, which are rich in leucine, are recommended for the elderly, but it is not known whether their replacement by plant proteins would maintain the health and physical independence of this population. Aged rats were fed with animal proteins (casein and whey proteins) with different leucine contents and compared to rats fed with diets in which whey was substituted with soy proteins and by increasing the total protein content or not. Our results clearly showed that the meal with mixed soy/whey proteins allowed the anabolic response of skeletal muscle during aging only if the protein content was increased by 25%. Indeed, if the protein content of the soy/whey diet was decreased to a similar protein content such as a whey diet, i.e. 13%, the anabolic effect decreased. The same observation was recorded if the whey proteins were totally substituted with soy proteins.
Collapse
Affiliation(s)
- Marianne Jarzaguet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mosoni L, Jarzaguet M, David J, Polakof S, Savary-Auzeloux I, Rémond D, Dardevet D. Post Meal Energy Boluses Do Not Increase the Duration of Muscle Protein Synthesis Stimulation in Two Anabolic Resistant Situations. Nutrients 2019; 11:E727. [PMID: 30934871 PMCID: PMC6520703 DOI: 10.3390/nu11040727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND When given in the long term, whey proteins alone do not appear to be an optimal nutritional strategy to prevent or slow down muscle wasting during aging or catabolic states. It has been hypothesized that the digestion of whey may be too rapid during a catabolic situation to sustain the anabolic postprandial amino acid requirement necessary to elicit an optimal anabolic response. Interestingly, it has been shown recently that the duration of the postprandial stimulation of muscle protein synthesis in healthy conditions can be prolonged by the supplementary ingestion of a desynchronized carbohydrate load after food intake. We verified this hypothesis in the present study in two different cases of muscle wasting associated with anabolic resistance, i.e., glucocorticoid treatment and aging. METHODS Multi-catheterized minipigs were treated or not with glucocorticoids for 8 days. Muscle protein synthesis was measured sequentially over time after the infusion of a 13C phenylalanine tracer using the arterio-venous method before and after whey protein meal ingestion. The energy bolus was given 150 min after the meal. For the aging study, aged rats were fed the whey meal and muscle protein synthesis was measured sequentially over time with the flooding dose method using 13C Valine. The energy bolus was given 210 min after the meal. RESULTS Glucocorticoid treatment resulted in a decrease in the duration of the stimulation of muscle protein synthesis. The energy bolus given after food intake was unable to prolong this stimulation despite a simultaneous increase of insulin and glucose following its absorption. In old rats, a similar observation was made with no effect of the energy bolus on the duration of the muscle anabolic response following whey protein meal intake. CONCLUSIONS Despite very promising observations in healthy situations, the strategy aimed at increasing muscle protein synthesis stimulation by giving an energy bolus during the postprandial period remained inefficient in our two anabolic resistance models.
Collapse
Affiliation(s)
- Laurent Mosoni
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Marianne Jarzaguet
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Jérémie David
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Sergio Polakof
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Isabelle Savary-Auzeloux
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Didier Rémond
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Dominique Dardevet
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Lee HW, Baker E, Lee KM, Persinger AM, Hawkins W, Puppa M. Effects of low-dose leucine supplementation on gastrocnemius muscle mitochondrial content and protein turnover in tumor-bearing mice. Appl Physiol Nutr Metab 2019; 44:997-1004. [PMID: 30768366 DOI: 10.1139/apnm-2018-0765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many forms of cancer are associated with loss of lean body mass, commonly attributed to decreased protein synthesis and stimulation of proteolytic pathways within the skeletal muscle. Leucine has been shown to improve protein synthesis, insulin signaling, and mitochondrial biogenesis, which are key signaling pathways influenced by tumor signaling. The purpose of this study was to examine the effects of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Twenty male C57BL/6 mice were divided into 4 groups (n = 5): Chow, leucine (Leu), Lewis lung carcinoma (LLC) implant, and LLC+Leu. At 9-10 weeks of age, mice were inoculated and supplemented with 5% leucine (w/w) in the diet. C2C12 myotubes were treated with 2.5 mmol/L leucine and 25% LLC conditioned media to further elucidate the direct influence of the tumor and leucine on the muscle. Measures of protein synthesis, mitochondrial biogenesis, and inflammation in the gastrocnemius were assessed via Western blot analysis. Gastrocnemius mass was decreased in LLC+Leu relative to LLC (p = 0.040). Relative protein synthesis rate was decreased in LLC mice (p = 0.001). No change in protein synthesis was observed in myotubes. Phosphorylation of STAT3 was decreased in the Leu group relative to the control in both mice (p = 0.019) and myotubes (p = 0.02), but did not significantly attenuate the inflammatory effect of LLC implantation (p = 0.619). LLC decreased markers of mitochondrial content; however, PGC-1α was increased in LLC+Leu relative to LLC (p = 0.001). While leucine supplementation was unable to preserve protein synthesis or mitochondrial content associated with LLC implantation, it was able to increase mitochondrial biogenesis signaling. Novelty This study provides novel insights on the effect of leucine supplementation on mitochondrial biogenesis and protein turnover in tumor-bearing mice. Leucine increased signaling for mitochondrial biogenesis in the skeletal muscle. Leucine supplementation decreased inflammatory signaling in skeletal muscle.
Collapse
Affiliation(s)
- Harold W Lee
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Ella Baker
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Kevin M Lee
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Aaron M Persinger
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - William Hawkins
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| | - Melissa Puppa
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA.,School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
12
|
|
13
|
Revel A, Jarzaguet M, Peyron MA, Papet I, Hafnaoui N, Migné C, Mosoni L, Polakof S, Savary-Auzeloux I, Rémond D, Dardevet D. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs. PLoS One 2017; 12:e0186204. [PMID: 29045496 PMCID: PMC5646799 DOI: 10.1371/journal.pone.0186204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation. OBJECTIVE Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS), whey (WHEY) or a whey/ plant protein blend (BLEND) and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state. METHODS Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX). Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences. RESULTS In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals. CONCLUSIONS Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.
Collapse
Affiliation(s)
- Aurélia Revel
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Marianne Jarzaguet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Marie-Agnès Peyron
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Isabelle Papet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Noureddine Hafnaoui
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Carole Migné
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Laurent Mosoni
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Didier Rémond
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
| | - Dominique Dardevet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
14
|
Verney J, Martin V, Ratel S, Chavanelle V, Bargetto M, Etienne M, Chaplais E, Le Ruyet P, Bonhomme C, Combaret L, Guillet C, Boisseau N, Sirvent P, Dardevet D. Soluble Milk Proteins Improve Muscle Mass Recovery after Immobilization-Induced Muscle Atrophy in Old Rats but Do not Improve Muscle Functional Property Restoration. J Nutr Health Aging 2017; 21:1133-1141. [PMID: 29188872 DOI: 10.1007/s12603-016-0855-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. DESIGN Longitudinal animal study. SETTING Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. INTERVENTION Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. MEASUREMENTS Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. RESULTS In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. CONCLUSION Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.
Collapse
Affiliation(s)
- J Verney
- Dominique Dardevet, INRA, Unité de Nutrition Humaine (UNH, UMR 1019), CRNH Auvergne, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dietary supplementation with shiikuwasha extract attenuates dexamethasone-induced skeletal muscle atrophy in aged rats. SPRINGERPLUS 2016; 5:816. [PMID: 27390656 PMCID: PMC4916103 DOI: 10.1186/s40064-016-2427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Background Skeletal muscle atrophy is caused by a variety of diseases and conditions. In particular, skeletal muscle atrophy in the elderly contributes to a loss of independence with advanced age and increases the risk of falling. However, the effect of food consumed on a daily basis on skeletal muscle atrophy has been the focus of little research. In this study, the effects of dietary supplementation with shiikuwasha extract or grape extract on dexamethasone-induced skeletal muscle atrophy were evaluated in aged rats. Methods Aged male rats (15-month-old) were fed a diet supplemented with either 1 % shiikuwasha extract or 1 % grape extract for 19 days. During the last 5 days of the feeding period, rats were injected with dexamethasone to induce muscle atrophy. Results Body weight and hind-limb muscle weight were significantly decreased by dexamethasone treatment. The supplementation of shiikuwasha extract showed no effect on body weight loss, but markedly attenuated tibialis anterior muscle weight loss induced by dexamethasone. On the other hand, grape extract did not affect muscle weight loss. Furthermore, shiikuwasha extract significantly reduced dexamethasone-induced expression of atrogin-1 and MuRF1 mRNA, but did not reduce LC3B-II protein levels. Conclusion These results suggest that shiikuwasha extract may partially inhibit the activation of the ubiquitin–proteasome system and may consequently attenuate skeletal muscle atrophy induced by dexamethasone in aged rats.
Collapse
|
16
|
Savary-Auzeloux I, Magne H, Migné C, Oberli M, Breuillé D, Faure M, Vidal K, Perrot M, Rémond D, Combaret L, Dardevet D. A dietary supplementation with leucine and antioxidants is capable to accelerate muscle mass recovery after immobilization in adult rats. PLoS One 2013; 8:e81495. [PMID: 24312309 PMCID: PMC3843669 DOI: 10.1371/journal.pone.0081495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6–8 months) were subjected to unilateral hindlimb casting for 8 days (I0–I8) and then permitted to recover for 10 to 40 days (R10–R40). They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX) (I0 to I8), AOX and leucine (AOX + LEU) (I8 to R15) and LEU alone (R15 to R40). Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP) and post absorptive (PA) states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37%) in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40) due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40) without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states) and could be a promising strategy to be tested during recovery from bed rest in humans.
Collapse
Affiliation(s)
- Isabelle Savary-Auzeloux
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
- * E-mail:
| | - Hugues Magne
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Carole Migné
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marion Oberli
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Denis Breuillé
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Magali Faure
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Marie Perrot
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Didier Rémond
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Lydie Combaret
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Dominique Dardevet
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45:2163-72. [PMID: 23806868 DOI: 10.1016/j.biocel.2013.05.036] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 12/11/2022]
Abstract
Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoids (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy is characterized by fast-twitch, glycolytic muscles atrophy illustrated by decreased fiber cross-sectional area and reduced myofibrillar protein content. GC-induced muscle atrophy results from increased protein breakdown and decreased protein synthesis. Increased muscle proteolysis, in particular through the activation of the ubiquitin proteasome and the lysosomal systems, is considered to play a major role in the catabolic action of GC. The stimulation by GC of these two proteolytic systems is mediated through the increased expression of several Atrogenes ("genes involved in atrophy"), such as FOXO, Atrogin-1, and MuRF-1. The inhibitory effect of GC on muscle protein synthesis is thought to result mainly from the inhibition of the mTOR/S6 kinase 1 pathway. These changes in muscle protein turnover could be explained by changes in the muscle production of two growth factors, namely Insulin-like Growth Factor (IGF)-I, a muscle anabolic growth factor and Myostatin, a muscle catabolic growth factor. This review will discuss the recent progress made in the understanding of the mechanisms involved in GC-induced muscle atrophy and consider the implications of these advancements in the development of new therapeutic approaches for treating GC-induced myopathy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
|
18
|
Dardevet D, Rémond D, Peyron MA, Papet I, Savary-Auzeloux I, Mosoni L. Muscle wasting and resistance of muscle anabolism: the "anabolic threshold concept" for adapted nutritional strategies during sarcopenia. ScientificWorldJournal 2012; 2012:269531. [PMID: 23326214 PMCID: PMC3541599 DOI: 10.1100/2012/269531] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/03/2012] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.
Collapse
Affiliation(s)
- Dominique Dardevet
- Clermont Université and Unité de Nutrition Humaine, Université d'Auvergne, BP 10448, 63000 Clermont-Ferrand, France.
| | | | | | | | | | | |
Collapse
|
19
|
Zanchi NE, Guimarães-Ferreira L, Siqueira-Filho MA, Gabriel Camporez JP, Nicastro H, Seixas Chaves DF, Campos-Ferraz P, Lancha AH, de Oliveira Carvalho CR. The possible role of leucine in modulating glucose homeostasis under distinct catabolic conditions. Med Hypotheses 2012; 79:883-8. [DOI: 10.1016/j.mehy.2012.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
20
|
Abstract
Recent advances in elucidating the mechanisms that control body protein synthesis and degradation both expand and complicate our understanding of how these processes are regulated. This review presents an introduction to the multiple regulatory systems involved, emphasizing the number of potential controls. These include gene transcription, gene activation or suppression, activation or suppression of mRNA translation and activation or suppression of signaling pathways. The complexity of these interacting controls presents a challenge to our understanding of the overall coordinated regulation of protein synthesis and degradation and its response to any particular stimulus. Specific examples are used to illustrate regulatory mechanisms, including the ways in which protein metabolism is regulated by the amino acid leucine. In addition to regulation associated with gene expression and post-translational control, the expanding field of epigenetics adds another layer of complexity, including trans-generational responses to nutrient intake, highlighting the potential for long-term impact of nutritional experience on the metabolism of subsequent generations.
Collapse
|
21
|
Sakuma K, Yamaguchi A. Sarcopenia and age-related endocrine function. Int J Endocrinol 2012; 2012:127362. [PMID: 22690213 PMCID: PMC3368374 DOI: 10.1155/2012/127362] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/22/2012] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, and an increased risk of fall-related injuries. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, numerous targets exist for drug discovery. In this paper, we summarize the current understanding of the endocrine contribution to sarcopenia and provide an update on hormonal intervention to try to improve endocrine defects. Myostatin inhibition seems to be the most interesting strategy for attenuating sarcopenia other than resistance training with amino acid supplementation. Testosterone supplementation in large amounts and at low frequency improves muscle defects with aging but has several side effects. Although IGF-I is a potent regulator of muscle mass, its therapeutic use has not had a positive effect probably due to local IGF-I resistance. Treatment with ghrelin may ameliorate the muscle atrophy elicited by age-dependent decreases in growth hormone. Ghrelin is an interesting candidate because it is orally active, avoiding the need for injections. A more comprehensive knowledge of vitamin-D-related mechanisms is needed to utilize this nutrient to prevent sarcopenia.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan
- *Kunihiro Sakuma:
| | - Akihiko Yamaguchi
- School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
22
|
Chen Y, Sood S, McIntire K, Roth R, Rabkin R. Leucine-stimulated mTOR signaling is partly attenuated in skeletal muscle of chronically uremic rats. Am J Physiol Endocrinol Metab 2011; 301:E873-81. [PMID: 21791619 DOI: 10.1152/ajpendo.00068.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The branched-chain amino acid leucine stimulates muscle protein synthesis in part by directly activating the mTOR signaling pathway. Furthermore, leucine, if given in conjunction with resistance exercise, enhances the exercise-induced mTOR signaling and protein synthesis. Here we tested whether leucine can activate the mTOR anabolic signaling pathway in uremia and whether it can enhance work overload (WO)-induced signaling through this pathway. Chronic kidney disease (CKD) and control rats were studied after 7 days of surgically induced unilateral plantaris muscle WO and a single leucine or saline load. In the basal state, 4E-BP1 phosphorylation was modestly depressed in non-WO muscle of CKD rats, whereas rpS6 phosphorylation was nearly completely suppressed. After oral leucine mTOR, S6K1 and rpS6 phosphorylation increased similarly in both groups, whereas the phospho-4E-BP1 response was modestly attenuated in CKD. WO alone activated the mTOR signaling pathway in control and CKD rats. In WO CKD, muscle leucine augmented mTOR and 4E-BP1 phosphorylation, but its effect on S6K1 phosphorylation was attenuated. Taken together, this study has established that the chronic uremic state impairs basal signaling through the mTOR anabolic pathway, an abnormality that may contribute to muscle wasting. However, despite this abnormality, leucine can stimulate this signaling pathway in CKD, although its effectiveness is partially attenuated, including in skeletal muscle undergoing sustained WO. Thus, although there is some resistance to leucine in CKD, the data suggest a potential role for leucine-rich supplements in the management of uremic muscle wasting.
Collapse
Affiliation(s)
- Yu Chen
- Research Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
23
|
Nicastro H, Artioli GG, Costa ADS, Solis MY, da Luz CR, Blachier F, Lancha AH. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 2010; 40:287-300. [PMID: 20514547 DOI: 10.1007/s00726-010-0636-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/17/2010] [Indexed: 12/11/2022]
Abstract
The characterization of the mechanisms underlying skeletal muscle atrophy under different conditions has been a constant focus of research. Among anti-atrophic therapies, amino acid supplementation, particularly with leucine, has received a lot of attention. Supplementation has been shown to have remarkable effects on muscle remodeling through protein turnover modulation. This may then impact physiological parameters related to muscle function, and even quality of life. In light of this, leucine supplementation could be a useful therapy for mitigating the atrophic effects of catabolic conditions. The purpose of this review is to present the major results of human studies evaluating the effects of leucine supplementation on structure and function of skeletal muscle in atrophic conditions such as muscle disuse, sarcopenia, and cancer.
Collapse
Affiliation(s)
- Humberto Nicastro
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pereira RMR, Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine 2010; 78:41-4. [PMID: 20471889 DOI: 10.1016/j.jbspin.2010.02.025] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
Glucocorticoid-induced myopathy, characterized by muscle weakness without pain, fatigue and atrophy, is an adverse effect of glucocorticoid use and is the most common type of drug-induced myopathy. This muscle disturbance has a frequency of 60%, and it has been most often associated with fluorinated glucocorticoid preparations. Glucocorticoids have a direct catabolic effect on muscle, decreasing protein synthesis and increasing the rate of protein catabolism leading to muscle atrophy. In clinical practice, it is important to differentiate myopathy due to glucocorticoid from muscle inflammatory diseases. The treatment is based on reduction or, if possible, on discontinuation of the steroid. Fluorinated glucocorticoids such as dexamethasone should be replaced with nonfluorinated glucocorticoids such as prednisone. Other experimental treatments may be tried such as IGF-I, branched-chain amino acids, creatine, androgens such as testosterone, nandrolone and dehydroepiandrosterone (DHEA), and glutamine.
Collapse
Affiliation(s)
- Rosa Maria Rodrigues Pereira
- Rheumatology Division, Faculdade de Medicina, Universidade de São Paulo, avenue Dr. Arnaldo, 455, 3 andar, sala 3105, São Paulo, 01246-903, Brazil.
| | | |
Collapse
|
25
|
You YN, Short KR, Jourdan M, Klaus KA, Walrand S, Nair KS. The effect of high glucocorticoid administration and food restriction on rodent skeletal muscle mitochondrial function and protein metabolism. PLoS One 2009; 4:e5283. [PMID: 19381333 PMCID: PMC2667640 DOI: 10.1371/journal.pone.0005283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
Background Glucocorticoids levels are high in catabolic conditions but it is unclear how much of the catabolic effects are due to negative energy balance versus glucocorticoids and whether there are distinct effects on metabolism and functions of specific muscle proteins. Methodology/Principal Findings We determined whether 14 days of high dose methylprednisolone (MPred, 4 mg/kg/d) Vs food restriction (FR, food intake matched to MPred) in rats had different effects on muscle mitochondrial function and protein fractional synthesis rates (FSR). Lower weight loss (15%) occurred in FR than in MPred (30%) rats, while a 15% increase occurred saline-treated Controls. The per cent muscle loss was significantly greater for MPred than FR. Mitochondrial protein FSR in MPred rats was lower in soleus (51 and 43%, respectively) and plantaris (25 and 55%) than in FR, while similar decline in protein FSR of the mixed, sarcoplasmic, and myosin heavy chain occurred. Mitochondrial enzymatic activity and ATP production were unchanged in soleus while in plantaris cytochrome c oxidase activity was lower in FR than Control, and ATP production rate with pyruvate + malate in MPred plantaris was 28% lower in MPred. Branched-chain amino acid catabolic enzyme activities were higher in both FR and MPred rats indicating enhanced amino acid oxidation capacity. Conclusion/Significance MPred and FR had little impact on mitochondrial function but reduction in muscle protein synthesis occurred in MPred that could be explained on the basis of reduced food intake. A greater decline in proteolysis may explain lesser muscle loss in FR than in MPred rats.
Collapse
Affiliation(s)
- Y. Nancy You
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Kevin R. Short
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Marion Jourdan
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Katherine A. Klaus
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Stephane Walrand
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - K. Sreekumaran Nair
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The activity of the pituitary-adrenal axis can profoundly impact on body composition. This is dramatically seen in Cushing's syndrome (CS) but changes in body composition are also implicated in depression and alcoholic pseudocushing's. The pathophysiological mechanisms underlying these changes remain poorly understood. Changes to body composition in CS include increased fat mass, decreased bone mass, thinning of the skin and reduced lean mass. Why these tissues are affected so dramatically is unclear. Additionally, the change in body composition between individuals varies considerably for reasons which are only now becoming evident. This paper reviews the phenotypic changes with altered pituitary-adrenal axis activity and discusses the mechanisms involved. The primary focus is on adipose, bone, muscle and skin since the most dramatic changes are seen in these tissues.
Collapse
Affiliation(s)
- Eva Fernandez-Rodriguez
- Division of Medical Sciences, The Institute of Biomedical Research, The Medical School, The University of Birmingham, Birmingham , B15 2TH, UK
| | | | | |
Collapse
|
27
|
Pruznak AM, Kazi AA, Frost RA, Vary TC, Lang CH. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside prevents leucine-stimulated protein synthesis in rat skeletal muscle. J Nutr 2008; 138:1887-94. [PMID: 18806097 PMCID: PMC2596722 DOI: 10.1093/jn/138.10.1887] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several stress conditions are characterized by activation of 5'-AMP-activated protein kinase (AMPK) and the development of leucine resistance in skeletal muscle. In the present study, we determined whether direct activation of the AMPK by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) prevents the characteristic leucine-induced increase in protein synthesis by altering mammalian target of rapamycin (mTOR) signal transduction. Rats were injected with AICAR or saline (Sal) and 1 h thereafter received an oral gavage of leucine (or Sal). Efficacy of AICAR was verified by increased AMPK phosphorylation. AICAR decreased basal in vivo muscle (gastrocnemius) protein synthesis and completely prevented the leucine-induced increase, independent of a change in muscle adenine nucleotide concentration. AICAR also prevented the hyperphosphorylation of eukaryotic initiation factor (eIF) 4E binding protein (4E-BP1), ribosomal protein S6 kinase (S6K1), S6, and eIF4G in response to leucine, suggesting a decrease in mTOR activity. Moreover, AICAR prevented the leucine-induced redistribution of eIF4E from the inactive eIF4E.4E-BP1 to the active eIF4E.eIF4G complex. This ability of AICAR to produce muscle leucine resistance could not be attributed to a change in phosphorylation of tuberous sclerosis complex (TSC)2, the formation of a TSC1.TSC2 complex, the binding of raptor with mTOR, or the phosphorylation of eukaryotic elongation factor-2. However, the inhibitory actions of AICAR were associated with reduced phosphorylation of proline-rich Akt substrate-40 and increased phosphorylation of raptor, which represent potential mechanisms by which AICAR might be expected to inhibit leucine-induced increases in mTOR activity and protein synthesis under in vivo conditions.
Collapse
Affiliation(s)
- Anne M Pruznak
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
28
|
Menconi M, Fareed M, O'Neal P, Poylin V, Wei W, Hasselgren PO. Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med 2007; 35:S602-8. [PMID: 17713416 DOI: 10.1097/01.ccm.0000279194.11328.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review glucocorticoid-regulated molecular mechanisms of muscle wasting. DESIGN Review of recent literature describing the role of glucocorticoids in the regulation of proteolytic mechanisms, transcription factors, and nuclear cofactors in skeletal muscle during various catabolic conditions. MAIN RESULTS Catabolic doses of glucocorticoids induce muscle atrophy both in vivo and in vitro by stimulating protein breakdown and inhibiting protein synthesis. Signaling pathways that regulate muscle protein synthesis at the translational level are inhibited by glucocorticoids. Glucocorticoids increase the expression and activity of the ubiquitin-proteasome pathway, a major proteolytic mechanism of muscle atrophy. The expression and activity of muscle wasting-related transcription factors, including C/EBPbeta and delta and Forkhead box O 1, 3, and 4, as well as the nuclear cofactor p300, are up-regulated by glucocorticoid excess. CONCLUSIONS Muscle wasting in various catabolic conditions is, at least in part, regulated by glucocorticoids. The role of glucocorticoids in muscle wasting is complex and reflects regulation at the molecular level of multiple mechanisms influencing both synthesis and degradation of muscle proteins.
Collapse
Affiliation(s)
- Michael Menconi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Lang CH, Frost RA. Glucocorticoids and TNFalpha interact cooperatively to mediate sepsis-induced leucine resistance in skeletal muscle. Mol Med 2007. [PMID: 17380194 DOI: 10.2119/2006-00071.lang] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sepsis blunts the ability of nutrient signaling by leucine to stimulate skeletal muscle protein synthesis by impairing translation initiation. The present study tested the hypothesis that overproduction of either tumor necrosis factor (TNF)-alpha or glucocorticoids mediate the sepsis-induced leucine resistance. Prior to producing peritonitis, rats received either vehicle, TNF binding protein (TNF(BP)) to inhibit endogenous TNFalpha action, and/or the glucocorticoid receptor antagonist RU486. Leucine was orally administered to all rats 24 h thereafter and the gastrocnemius removed 20 min later to assess protein synthesis and signaling components important in controlling peptide-chain initiation. Muscle protein synthesis was 65% lower in septic rats administered leucine than in leucine-treated control animals. This reduction was not prevented by either TNF(BP) or RU486 alone, but was completely reversed by the combination. This sepsis-induced leucine resistance was associated with an 80% reduction in the amount of active eIF4E.eIF4G complex, a 5-fold increase in the formation of the inactive eIF4E.4E-BP1 complex as well as markedly reduced (at least 70%) phosphorylation of 4E-BP1, eIF4G, S6K1, S6, and mTOR. Pretreatment of septic rats with either TNF(BP) or RU486 individually only nominally improved the leucine action as assessed by the above-mentioned endpoints. In contrast, when TNF(BP) and RU486 were co-administered, the ability of sepsis to impair the leucine-stimulated phosphorylation of 4E-BP1, eIF4G, S6K1, and S6 as well as the redistribution of eIF4E was essentially prevented. No differences in the total amount or phosphorylation of eIF2alpha and eIF2Bepsilon were detected between the different groups, and changes could not be attributed to differences in the prevailing plasma concentration of insulin or leucine. Our data demonstrate the sepsis-induced leucine resistance in skeletal muscle results from the cooperative interaction of both TNFalpha and glucocorticoids.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular & Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
30
|
Kaasik P, Umnova M, Pehme A, Alev K, Aru M, Selart A, Seene T. Ageing and dexamethasone associated sarcopenia: peculiarities of regeneration. J Steroid Biochem Mol Biol 2007; 105:85-90. [PMID: 17587565 DOI: 10.1016/j.jsbmb.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 11/13/2006] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to assess the development of ageing- and glucocorticoid-related sarcopenia on the level of myofibrillar apparatus, paying attention to the synthesis (SR) and degradation rate (DR) of contractile proteins, muscle strength, and daily motor activity. We also wanted to test the effect of ageing and dexamethasone (Dex) excess on the regeneration peculiarities of skeletal muscle autografts. Four and 30-month-old male rats of the Wistar strain were used. Ageing associated sarcopenia was calculated from gastrocnemius muscle relative mass decrease (from 5.6 +/- 0.08 to 3.35 +/- 0.04; p < 0.001). The SR of MyHC in old rats was approximately 30% and actin approximately 23% lower than in young rats. Dex treatment decreased SR of two main contractile proteins significantly in both age groups (p < 0.001) and increased DR during ageing from 2.11 +/- 0.15 to 4.09 +/- 0.29%/day (p < 0.001). Hindlimb grip strength in young rats was 5.90 +/- 0.35 N/100 g bw and 2.64 +/- 0.2 N/100 g bw (p < 0.001) in old rats. Autografts of old rats have a higher content of adipose tissue 14.9 +/- 1.1% in comparison with young rats 6.8 +/- 0.51% (p < 0.001) and less muscle tissue 39.8 +/- 2.6% and 48.3 +/- 2.8%, respectively (p < 0.05). Both, ageing and dex-caused sarcopenic muscles have diminished capacity for regeneration.
Collapse
Affiliation(s)
- Priit Kaasik
- Department of Functional Morphology, University of Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H. Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 2006; 136:234S-6S. [PMID: 16365089 DOI: 10.1093/jn/136.1.234s] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been shown that BCAAs, especially leucine, regulate skeletal muscle protein metabolism. However, it remains unclear how BCAAs regulate muscle protein metabolism and lead to anabolism in vivo. We examined muscle protein synthesis rate and breakdown rate simultaneously during BCAA infusion in muscle atrophy models as well as in normal healthy rats. Corticosterone-treated rats and hindlimb-immobilized rats were used as muscle atrophy models. Muscle protein synthesis rate and breakdown rate were measured as phenylalanine kinetics across the hindlimb. In anesthetized normal rats, BCAAs stimulated muscle protein synthesis despite low insulin concentration and did not suppress muscle protein breakdown. In corticosterone-treated rats, BCAAs failed to restore inhibited muscle protein synthesis, but reduced muscle protein breakdown. Immobilization of hindlimb increased muscle protein breakdown within a day. BCAAs did not change muscle protein metabolism, although essential amino acids (EAAs) suppressed muscle protein breakdown in hindlimb-immobilized rats. We also evaluated changes of fractional synthesis rate (FSR) of skeletal muscle protein during infusion of leucine alone or EAAs for 4 h in anesthetized normal rats. FSR showed a transient increase at 15-30 min of leucine infusion and then declined, whereas FSR stayed elevated throughout EAA infusion. We concluded that 1) BCAAs primarily stimulate muscle protein synthesis in normal rats independently of insulin; 2) EAAs are required to maintain the BCAA stimulation of muscle protein synthesis; and 3) The effects of BCAAs on muscle protein metabolism differ between atrophy models.
Collapse
Affiliation(s)
- Hisamine Kobayashi
- Applied Research Department, AminoScience Laboratories, Ajinomoto Co., Kawasaki, Japan.
| | | | | | | | | |
Collapse
|
32
|
Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 2005; 37:1962-73. [PMID: 15905114 DOI: 10.1016/j.biocel.2005.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/15/2005] [Accepted: 04/12/2005] [Indexed: 12/25/2022]
Abstract
One of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response. However, since muscle protein mass is already depleted, the ability of the aged organism to recover from stress is impaired. Therefore, elucidating the mechanisms that result in sarcopenia is of obvious importance. Age-related changes in protein synthesis and proteolysis are rather small and our current methodology does not enable one to establish unequivocally whether sarcopenia results from depressed protein synthesis, increased proteolysis or both. By contrast, in anabolic and catabolic periods, a number of dysregulations in muscle protein turnover became clearly apparent. The aim of this review is to provide an overview of such altered responses to nutrients and catabolic treatments, which may ultimately contribute to explain sarcopenia. This includes impaired recovery in catabolic states, impaired anabolic effects of nutrients, in particular leucine, and a lack of regulation of the ubiquitin-proteasome proteolytic system. These alterations are discussed with respect to modifications in the insulin/IGF-1 axis and glucocorticoid related effects.
Collapse
Affiliation(s)
- Didier Attaix
- Human Nutrition Research Center of Clermont-Ferrand, Institut National de la Recherche Agronomique, Nutrition and Protein Metabolism Unit, 63122 Ceyrat, France.
| | | | | | | | | | | |
Collapse
|