1
|
Guo J, Chiang WC. Mitophagy in aging and longevity. IUBMB Life 2021; 74:296-316. [PMID: 34889504 DOI: 10.1002/iub.2585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
The clearance of damaged or unwanted mitochondria by autophagy (also known as mitophagy) is a mitochondrial quality control mechanism postulated to play an essential role in cellular homeostasis, metabolism, and development and confers protection against a wide range of diseases. Proper removal of damaged or unwanted mitochondria is essential for organismal health. Defects in mitophagy are associated with Parkinson's, Alzheimer's disease, cancer, and other degenerative disorders. Mitochondria regulate organismal fitness and longevity via multiple pathways, including cellular senescence, stem cell function, inflammation, mitochondrial unfolded protein response (mtUPR), and bioenergetics. Thus, mitophagy is postulated to be pivotal for maintaining organismal healthspan and lifespan and the protection against aged-related degeneration. In this review, we will summarize recent understanding of the mechanism of mitophagy and aspects of mitochondrial functions. We will focus on mitochondria-related cellular processes that are linked to aging and examine current genetic evidence that supports the hypothesis that mitophagy is a pro-longevity mechanism.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Chen KS, Menezes K, Rodgers JB, O’Hara DM, Tran N, Fujisawa K, Ishikura S, Khodaei S, Chau H, Cranston A, Kapadia M, Pawar G, Ping S, Krizus A, Lacoste A, Spangler S, Visanji NP, Marras C, Majbour NK, El-Agnaf OMA, Lozano AM, Culotti J, Suo S, Ryu WS, Kalia SK, Kalia LV. Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Mol Neurodegener 2021; 16:77. [PMID: 34772429 PMCID: PMC8588601 DOI: 10.1186/s13024-021-00497-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Kevin S. Chen
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Krystal Menezes
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | - Darren M. O’Hara
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Nhat Tran
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Kazuko Fujisawa
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Seiya Ishikura
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Shahin Khodaei
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Hien Chau
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Anna Cranston
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Minesh Kapadia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Grishma Pawar
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Susan Ping
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Aldis Krizus
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | | | - Naomi P. Visanji
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Nour K. Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Andres M. Lozano
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Satoshi Suo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - William S. Ryu
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - Suneil K. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
- KITE and CRANIA, University Health Network, Toronto, ON Canada
| | - Lorraine V. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON Canada
| |
Collapse
|
3
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
4
|
Shen L, Wang C, Chen L, Wong G. Dysregulation of MicroRNAs and PIWI-Interacting RNAs in a Caenorhabditis elegans Parkinson's Disease Model Overexpressing Human α-Synuclein and Influence of tdp-1. Front Neurosci 2021; 15:600462. [PMID: 33762903 PMCID: PMC7982545 DOI: 10.3389/fnins.2021.600462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) regulate gene expression and biological processes through specific genetic and epigenetic mechanisms. Recent studies have described a dysregulation of small non-coding RNAs in Parkinson’s disease (PD) tissues but have been limited in scope. Here, we extend these studies by comparing the dysregulation of both miRNAs and piRNAs from transgenic Caenorhabditis elegans (C. elegans) nematodes overexpressing pan-neuronally human α-synuclein wild-type (WT) (HASNWT OX) or mutant (HASNA53T OX). We observed 32 miRNAs and 112 piRNAs dysregulated in HASNA53T OX compared with WT. Genetic crosses of HASNA53T OX PD animal models with tdp-1 null mutants, the C. elegans ortholog of TDP-43, an RNA-binding protein aggregated in frontal temporal lobar degeneration, improved their behavioral deficits and changed the number of dysregulated miRNAs to 11 and piRNAs to none. Neuronal function-related genes T28F4.5, C34F6.1, C05C10.3, camt-1, and F54D10.3 were predicted to be targeted by cel-miR-1018, cel-miR-355-5p (C34F6.1 and C05C10.3), cel-miR-800-3p, and 21ur-1581 accordingly. This study provides a molecular landscape of small non-coding RNA dysregulation in an animal model that provides insight into the epigenetic changes, molecular processes, and interactions that occur during PD-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Linjing Shen
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Changliang Wang
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, China.,Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
| | - Garry Wong
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
5
|
Timmers PRHJ, Wilson JF, Joshi PK, Deelen J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat Commun 2020; 11:3570. [PMID: 32678081 PMCID: PMC7366647 DOI: 10.1038/s41467-020-17312-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Ageing phenotypes, such as years lived in good health (healthspan), total years lived (lifespan), and survival until an exceptional old age (longevity), are of interest to us all but require exceptionally large sample sizes to study genetically. Here we combine existing genome-wide association summary statistics for healthspan, parental lifespan, and longevity in a multivariate framework, increasing statistical power, and identify 10 genomic loci which influence all three phenotypes, of which five (near FOXO3, SLC4A7, LINC02513, ZW10, and FGD6) have not been reported previously at genome-wide significance. The majority of these 10 loci are associated with cardiovascular disease and some affect the expression of genes known to change their activity with age. In total, we implicate 78 genes, and find these to be enriched for ageing pathways previously highlighted in model organisms, such as the response to DNA damage, apoptosis, and homeostasis. Finally, we identify a pathway worthy of further study: haem metabolism.
Collapse
Affiliation(s)
- Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
6
|
Shen L, Wang C, Chen L, Leung KL, Lo E, Lakso M, Wong G. TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165876. [PMID: 32531261 DOI: 10.1016/j.bbadis.2020.165876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
TAR DNA binding protein (TDP-43) is a DNA/RNA binding protein whose pathological role in amyotrophic lateral sclerosis (ALS) and frontal temporal lobe dementia (FTLD) via formation of protein aggregates is well established. In contrast, knowledge concerning its interactions with other neuropathological aggregating proteins is poorly understood. Human α-synuclein (HASN) elicits dopaminergic neuron degeneration via protein aggregation in Parkinson's disease. HASN protein aggregates are also found in TDP-43 lesions and colocalize in Lewy Body Dementia (LBD). To better understand the interactions of TDP-43 and HASN, we investigated the effects of genetic deletion of tdp-1, the Caenorhabditis elegans ortholog of human TDP-43, as well as overexpression of TDP-43, in transgenic models overexpressing HASNWT and HASNA53T. Tdp-1 deletion improved the posture, movement, and developmental delay observed in transgenic animals pan-neuronally overexpressing HASNA53T, and attenuated the loss and impairment of dopaminergic neurons caused by HASNA53T or HASNWT overexpression. Tdp-1 deletion also led to a decrease in protein level, mRNA level and aggregate formation of HASN in living animals. RNA-seq studies suggested that tdp-1 supports expression of lysosomal genes and decreases expression of genes involved in heat shock. RNAi demonstrated that heat shock proteins can mediate HASN neuropathology. Co-overexpression of both human TDP-43 and HASNWT resulted in locomotion deficits, shorter lifespan, and more severe dopaminergic neuron impairments compared to single transgenes. Our results suggest TDP-1/TDP-43 potentiates HASN mediated neurodegeneration in C. elegans. This study indicates a multifunctional role for TDP-1/TDP-43 in neurodegeneration involving HASN.
Collapse
Affiliation(s)
- Linjing Shen
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Changliang Wang
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou 515063, China; Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ka Lai Leung
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Esther Lo
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Merja Lakso
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Garry Wong
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China.
| |
Collapse
|
7
|
Hentrich T, Wassouf Z, Riess O, Schulze-Hentrich JM. SNCA overexpression disturbs hippocampal gene expression trajectories in midlife. Aging (Albany NY) 2019; 10:4024-4041. [PMID: 30543522 PMCID: PMC6326667 DOI: 10.18632/aging.101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Synucleinopathies like Parkinson's disease and dementia with Lewy bodies originate from a complex and still largely enigmatic interplay of genetic predisposition, age, and environmental factors. While progressively declining motor functions hallmark late-life symptoms, first signs of the disease often surface already decades earlier during midlife. To better understand early disease stages with respect to the genetic, temporal, and environmental dimension, we interrogated hippocampal transcriptome data obtained during midlife for a mouse model overexpressing human SNCA, a pivotal gene in synucleinopathies, under different environments. To relate differentially expressed genes to human, we integrated expression signatures for aging and Parkinson's disease. We identified two distinctive modes of age-dependent disturbances: First, cellular processes seemingly activated too early that reflected advanced stages of age and, second, typical longitudinal adaptations of the system that no longer occurred during midlife. Environmental enrichment prevented both disturbances modes despite persistent SNCA overload. Together, our results caution the view that expression changes characterising early stages of SNCA-related pathology reflect accelerated aging alone. Instead, we provide evidence that failure to undergo healthy adaptions during midlife represents a second origin of disturbances. This bimodal disturbance principle could inform therapeutic efforts to distinguish between preventive and restorative attempts to target the disease.
Collapse
Affiliation(s)
- Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
8
|
Caloric restriction rescues yeast cells from alpha-synuclein toxicity through autophagic control of proteostasis. Aging (Albany NY) 2019; 10:3821-3833. [PMID: 30530923 PMCID: PMC6326672 DOI: 10.18632/aging.101675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/18/2018] [Indexed: 01/31/2023]
Abstract
α-Synuclein (SNCA) is a presynaptic protein that is associated with the pathophysiology of synucleinopathies, including Parkinson's disease. SNCA is a naturally aggregation-prone protein, which may be degraded by the ubiquitin-proteasome system (UPS) and by lysosomal degradation pathways. Besides being a target of the proteolytic systems, SNCA can also alter the function of these pathways further, contributing to the progression of neurodegeneration. Deterioration of UPS and autophagy activities with aging further aggravates this toxic cycle. Caloric restriction (CR) is still the most effective non-genetic intervention promoting lifespan extension. It is known that CR-mediated lifespan extension is linked to the regulation of proteolytic systems, but the mechanisms underlying CR rescue of SNCA toxicity remain poorly understood. This study shows that CR balances UPS and autophagy activities during aging. CR enhances UPS activity, reversing the decline of the UPS activity promoted by SNCA, and keeps autophagy at homeostatic levels. Maintenance of autophagy at homeostatic levels appears to be relevant for UPS activity and for the mechanism underlying rescue of cells from SNCA-mediated toxicity by CR.
Collapse
|
9
|
Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech Ageing Dev 2016; 161:270-276. [PMID: 27109470 DOI: 10.1016/j.mad.2016.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023]
Abstract
Alpha-synuclein (syn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), which are implicated in the pathogenesis of the neurodegenerative diseases known as synucleinopathies, like Parkinson's disease (PD). Aging is a major risk factor for PD and thus, interventions that delay aging will have promising effects in PD and other synucleinopathies. Caloric restriction (CR) is the only non-genetic intervention shown to promote lifespan extension in several model organisms. CR has been shown to alleviate syn toxicity and herein we confirmed the same effect on the yeast model for synucleinopathies during chronological lifespan. The data gathered showed that TOR1 deletion also results in similar longevity extension and abrogation of syn toxicity. Intriguingly, these interventions were associated with decreased autophagy, which was maintained at homeostatic levels. Autophagy maintenance at homeostatic levels promoted by CR or TOR1 abrogation in syn-expressing cells was achieved by decreasing Sir2 levels and activity. Furthermore, the opposite function of Tor1 and Sir2 in autophagy is probably associated with the maintenance of autophagy activity at homeostatic levels, a central event linked to abrogation of syn toxicity promoted by CR.
Collapse
|
10
|
O'Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 2014; 69-70:247-53. [PMID: 24333896 DOI: 10.1016/j.addr.2013.12.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
Caenorhabditis elegans has been proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Cliff J Luke
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Gary A Silverman
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Stephen C Pak
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA.
| |
Collapse
|
11
|
Bodhicharla R, Nagarajan A, Winter J, Adenle A, Nazir A, Brady D, Vere K, Richens J, O'Shea P, Bell DR, de Pomerai D. Effects of α-synuclein overexpression in transgenic Caenorhabditis elegans strains. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:965-75. [PMID: 23244416 PMCID: PMC3744922 DOI: 10.2174/1871527311211080005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 12/05/2022]
Abstract
The neural protein α-synuclein aggregates both in vivo and in vitro to form insoluble fibrils that are involved in Parkinson’s disease pathogenesis. We have generated α-synuclein/fluorescent-protein fusion constructs overexpressed in muscle cells of the nematode, Caenorhabdtis elegans. Green Fluorescent Protein (GFP) variants, Cerulean (C) or Venus (V), were fused to the C-terminus of human α-synuclein (S); the resultant fusion genes were designated SV and SC, plus a CV fusion as well as S, C and V singly. The aggregation behavior of the purified fusion proteins (expressed in E. coli) will be described elsewhere. These constructs were fused to a C. elegans unc-54 myosin promoter, and integrated transgenic lines generated by microinjection, γ-irradiation, and outcrossing of fluorescent progeny. All transgenic lines expressing α-synuclein showed significant reductions (p < 0.05) in lifespan, motility and pharyngeal pumping, as compared to wild-type worms or lines expressing CFP and/or YFP only. We showed that CFP and YFP labels colocalised in granular inclusions throughout the body wall in transgenic lines expressing both SC and SV fusions (SC+SV), whereas SV+C worms displayed YFP-labelled inclusions on a diffuse CFP background. These findings implied that the α-synuclein moieties of these fusion proteins still aggregated together in vivo, whereas CFP or YFP moieties alone did not. This in turn suggested that Foerster Resonanace Energy Transfer (FRET) between CFP and YFP labels in α-synuclein aggregates could allow the extent of aggregation to be quantified. Accordingly, we also showed that net FRET signals increased 2-fold between L4 and adult SC+SV worms.
Collapse
Affiliation(s)
- Rakesh Bodhicharla
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wong G, Nass R. miRNAs and their putative roles in the development and progression of Parkinson's disease. Front Genet 2013; 3:315. [PMID: 23316214 PMCID: PMC3540391 DOI: 10.3389/fgene.2012.00315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/20/2012] [Indexed: 01/22/2023] Open
Abstract
Small regulatory RNAs, such as miRNAs, are increasingly being recognized not only as regulators of developmental processes but contributors to pathological states. The number of miRNAs determined experimentally to be involved in Parkinson's disease (PD) development and progression is small and includes regulators of pathologic proteins, neurotrophic factors, and xenobiotic metabolizing enzymes. PD gene-association studies have also indicated miRNAs in the pathology. In this review, we present known miRNAs and their validated targets that contribute to PD development and progression. We also incorporate data mining methods to link additional miRNAs with non-experimentally validated targets and propose additional roles of miRNAs in neurodegenerative processes. Furthermore, we present the potential contribution of next-generation-sequencing approaches to elucidate mechanisms and etiology of PD through discovery of novel miRNAs and other non-coding RNA classes.
Collapse
Affiliation(s)
- Garry Wong
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland Kuopio, Finland
| | | |
Collapse
|
13
|
Rytinki MM, Lakso M, Pehkonen P, Aarnio V, Reisner K, Peräkylä M, Wong G, Palvimo JJ. Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci 2011; 68:3219-32. [PMID: 21253676 PMCID: PMC11114839 DOI: 10.1007/s00018-011-0627-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/17/2023]
Abstract
Small ubiquitin-related modifiers (SUMOs) are important regulator proteins. Caenorhabditis elegans contains a single SUMO ortholog, SMO-1, necessary for the reproduction of C. elegans. In this study, we constructed transgenic C. elegans strains expressing human SUMO-1 under the control of pan-neuronal (aex-3) or pan-muscular (myo-4) promoter and SUMO-2 under the control of myo-4 promoter. Interestingly, muscular overexpression of SUMO-1 or -2 resulted in morphological changes of the posterior part of the nematode. Movement, reproduction and aging of C. elegans were perturbed by the overexpression of SUMO-1 or -2. Genome-wide expression analyses revealed that several genes encoding components of SUMOylation pathway and ubiquitin-proteasome system were upregulated in SUMO-overexpressing nematodes. Since muscular overexpression of SMO-1 also brought up reproductive and mobility perturbations, our results imply that the phenotypes were largely due to an excess of SUMO, suggesting that a tight control of SUMO levels is important for the normal development of multicellular organisms.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Lakso
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Vuokko Aarnio
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kaja Reisner
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Developmental Biology, Institute of Zoology and Hydrobiology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia
| | - Mikael Peräkylä
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Garry Wong
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
14
|
Sen S, West AB. The therapeutic potential of LRRK2 and alpha-synuclein in Parkinson's disease. Antioxid Redox Signal 2009; 11:2167-87. [PMID: 19271991 PMCID: PMC2787962 DOI: 10.1089/ars.2009.2430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current treatments for Parkinson's disease fail to modify disease progression, and the underlying pathogenic mechanisms remain elusive. The identification of specific targets responsible for disease will aid in the development of relevant model systems and the discovery of neuroprotective and neurorestorative therapies. Two promising protein candidates, alpha-synuclein and LRRK2, offer unique insight into the molecular basis of disease and the potential to intervene in pathogenesis. Although multiple lines of evidence support alpha-synuclein and LRRK2 as robust targets for therapy, the connection between protein function and neurodegeneration is unclear. Technology capable of mitigating alpha-synuclein and LRRK2 disease-associated function will ultimately be required before the true value of these proteins as therapeutic targets can be discerned.
Collapse
Affiliation(s)
- Saurabh Sen
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
15
|
Windisch M, Wolf H, Hutter-Paier B, Wronski R. The role of alpha-synuclein in neurodegenerative diseases: a potential target for new treatment strategies? NEURODEGENER DIS 2008; 5:218-21. [PMID: 18322395 DOI: 10.1159/000113707] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (AS) is the main constituent of Lewy bodies. There is an ongoing discussion if overexpression is already dangerous, or if toxicity is subjected to oligomers, protofibrils or mature aggregates. The facts that the central hydrophobic part of AS is also a constituent of amyloid plaques in Alzheimer's disease (AD) and that a majority of patients have Lewy bodies and Lewy neurites in specific brain areas raised our interest in the contribution of AS to AD pathogenesis. The N-terminal amino acid sequence 1-15 of beta-synuclein (BS) seems to be a natural antiaggregation factor for AS. We synthesized a library with different sequence variations. Several of these peptides displayed neuroprotective activity in tissue culture models of neurodegeneration induced by oxidative stress or beta-amyloid 1-42. In spite of the fact that these peptides have a short half-life, a significant in vivo reduction in brain plaque load and improvement of behavior was demonstrated in amyloid precursor protein transgenic mice after intranasal treatment for 2 months. KEGV, the shortest sequence, was also active after intraperitoneal application. The in vitro effects cannot be explained by the antiaggregatory potential, but most likely by interaction of BS derivates with antiapoptotic PI3/Akt or antioxidative pathways. The possibility that BS-derived peptidomimetics act as neuroprotectants and prevent protein misfolding suggests therapeutic usefulness.
Collapse
Affiliation(s)
- M Windisch
- Institute of Experimental Pharmacology, JSW Research, Graz, Austria.
| | | | | | | |
Collapse
|
16
|
Hunya Á, Földi I, Szegedi V, Soós K, Zarándi M, Szabó A, Zádori D, Penke B, Datki ZL. Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Aβ(1-42) and NAC treatment. Brain Res Bull 2008; 75:648-54. [DOI: 10.1016/j.brainresbull.2007.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/27/2007] [Accepted: 10/22/2007] [Indexed: 12/31/2022]
|