1
|
De D, Karmakar P, Bhattacharya D. Stem Cell Aging and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1326:11-37. [PMID: 32910426 DOI: 10.1007/5584_2020_577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells are a promising source for regenerative medicine to cure a plethora of diseases that are currently treated based on either palliative or symptomatic relief or by preventing their onset and progression. Aging-associated degenerative changes in stem cells, stem cell niches, and signaling pathways bring a step by step decline in the regenerative and functional potential of tissues. Clinical studies and experiments on model organisms have pointed out checkpoints that aging will inevitably impose on stem cell aiming for transplantation and hence questions are raised about the age of the donor. In the following discourse, we review the fundamental molecular pathways that are implicated in stem cell aging and the current progress in tissue engineering and transplantation of each type of stem cells in regenerative medicine. We further focus on the consequences of stem cell aging on their clinical uses and the development of novel strategies to bypass those pitfalls and improve tissue replenishment.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Life science and Biotechnology, Jadavpur University, Kolkata, India
| | - Parimal Karmakar
- Department of Life science and Biotechnology, Jadavpur University, Kolkata, India
| | | |
Collapse
|
2
|
Al-Mayah AHJ, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA. Exosome-Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation. Radiat Res 2016; 187:98-106. [PMID: 27959588 DOI: 10.1667/rr14201.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.
Collapse
Affiliation(s)
- Ammar H J Al-Mayah
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Scott J Bright
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Debbie A Bowler
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Predrag Slijepcevic
- b Department of Life Sciences, College of Health and Life Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Edwin Goodwin
- c The New Mexico Consortium, Los Alamos, New Mexico 87544
| | - Munira A Kadhim
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
3
|
DNA Damage Response in Hematopoietic Stem Cell Ageing. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:147-154. [PMID: 27221660 PMCID: PMC4936660 DOI: 10.1016/j.gpb.2016.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 12/30/2022]
Abstract
Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.
Collapse
|
4
|
Zhou S. Paracrine effects of haematopoietic cells on human mesenchymal stem cells. Sci Rep 2015; 5:10573. [PMID: 26030407 PMCID: PMC4450757 DOI: 10.1038/srep10573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022] Open
Abstract
Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing.
Collapse
Affiliation(s)
- Shuanhu Zhou
- 1] Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
5
|
Saini A, Mastana S, Myers F, Lewis MP. 'From death, lead me to immortality' - mantra of ageing skeletal muscle. Curr Genomics 2013; 14:256-67. [PMID: 24294106 PMCID: PMC3731816 DOI: 10.2174/1389202911314040004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a post-mitotic tissue maintained by repair and regeneration through a population of stem cell-like satellite cells. Following muscle injury, satellite cell proliferation is mediated by local signals ensuring sufficient progeny for tissue repair. Age–related changes in satellite cells as well as to the local and systemic environment potentially impact on the capacity of satellite cells to generate sufficient progeny in an ageing organism resulting in diminished regeneration. ‘Rejuvenation’ of satellite cell progeny and regenerative capacity by environmental stimuli effectors suggest that a subset of age-dependent satellite cell changes may be reversible. Epigenetic regulation of satellite stem cells that include DNA methylation and histone modifications which regulate gene expression are potential mechanisms for such reversible changes and have been shown to control organismal longevity. The area of health and ageing that is likely to benefit soonest from advances in the biology of adult stem cells is the emerging field of regenerative medicine. Further studies are needed to elucidate the mechanisms by which epigenetic modifications regulate satellite stem cell function and will require an increased understanding of stem-cell biology, the environment of the aged tissue and the interaction between the two.
Collapse
Affiliation(s)
- Amarjit Saini
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) continuously provide mature blood cells during the lifespan of a mammal. The functional decline in hematopoiesis in the elderly, which involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, is partly linked to HSC aging. Molecular mechanisms of HSC aging remain unclear, hindering rational approaches to slow or reverse the decline of HSC function with age. Identifying conditions under which aged HSCs become equivalent to young stem cells might result in treatments for age-associated imbalances in lymphopoiesis and myelopoiesis and in blood regeneration. RECENT FINDINGS Aging of HSCs has been for a long time thought to be an irreversible process imprinted in stem cells due to the intrinsic nature of HSC aging. Mouse model studies have found that aging is associated with elevated activity of the Rho GTPase Cdc42 in HSCs that is causative for loss of polarity, altered epigenetic modifications and functional deficits of aged HSCs. The work suggests that inhibition of Cdc42 activity in aged HSCs may reverse a number of phenotypes associated with HSC aging. SUMMARY Maintaining the regenerative capacity of organs or organ systems may be a useful way to ensure healthy aging. A defined set of features phenotypically separate young from aged HSCs. Aging of HSCs has been thought to be irreversible. Recent findings support the hypothesis that functional decline of aged HSCs may be reversible by pharmacological intervention of age altered signaling pathways and epigenetic modifications.
Collapse
|
7
|
Cipriani P, Carubbi F, Liakouli V, Marrelli A, Perricone C, Perricone R, Alesse E, Giacomelli R. Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmun Rev 2012. [PMID: 23183379 DOI: 10.1016/j.autrev.2012.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review we report the recent progresses, available in the literature, concerning the biology and the potential therapeutic role of both mesenchymal stem cells (MSCs) and hematopoietic stem cells in autoimmune diseases. Mesenchymal stem cells (MSCs) are responsible for the normal turnover and maintenance of adult mesenchymal tissues and their pleiotropic nature allows them to sense and respond to an event in the local environment, be it injury or inflammation. Recently, MSCs have been shown to have immune-modulatory properties and immunosuppressive capacities, acting on different immune cells both in vitro and in vivo, in addition to an immunologically privileged phenotype. Moreover, several works suggest that MSCs are defective in autoimmune diseases. These aspects are now considered the most intriguing aspect of their biology, introducing the possibility that these cells might be used as effective therapy in autoimmune diseases. Autoimmune diseases represent a failure of normal immune regulatory processes as they are characterized by activation and expansion of immune cell subsets in response to non-pathogenic stimuli. As autoimmune diseases can be transferred, or alternatively, cured, by stem cell transplantation, a defect in the hemopoietic stem cell as a cause of autoimmune diseases may be postulated. The rationale for autologous hematopoietic stem cell transplantation (HSCT) in autoimmune diseases is the ablation of an aberrant or self-reactive immune system by chemotherapy and regeneration of a new and hopefully self-tolerant immune system from hematopoietic stem cells. In the past 15years, more than 1500 patients worldwide have received HSCT, mostly autologous, as treatment for a severe autoimmune disease and the majority were affected by multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, juvenile idiopathic arthritis and idiopathic cytopenic purpura.
Collapse
Affiliation(s)
- Paola Cipriani
- Rheumatology Unit, Clinical Science and Biotechnology Department, University of L'Aquila, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Torres-Montaner A. Cancer origin in committed versus stem cells: Hypothetical antineoplastic mechanism/s associated with stem cells. Crit Rev Oncol Hematol 2011; 80:209-24. [DOI: 10.1016/j.critrevonc.2011.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 12/22/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022] Open
|
9
|
Kürn U, Rendulic S, Tiozzo S, Lauzon RJ. Asexual propagation and regeneration in colonial ascidians. THE BIOLOGICAL BULLETIN 2011; 221:43-61. [PMID: 21876110 DOI: 10.1086/bblv221n1p43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Regeneration is widely distributed among the metazoans. However, clear differences exist as to the degree of regenerative capacity: some phyla can only replace missing body parts, whereas others can generate entirely new individuals. Ascidians are animals that possess a remarkable regenerative plasticity and exhibit a great diversity of mechanisms for asexual propagation and survival. They are marine invertebrate members of the subphylum Tunicata and represent modern-day descendants of the chordate ancestor; in their tadpole stage they exhibit a chordate body plan that is resorbed during metamorphosis. Solitary species grow into an adult that can reach several centimeters in length, whereas colonial species grow by asexual propagation, creating a colony of genetically identical individuals. In this review, we present an overview of the biology of colonial ascidians as a paradigm for study in stem cell and regenerative biology. Focusing on botryllid ascidians, we introduce the potential roles played by multipotent epithelia and multipotent/pluripotent stem cells as source of asexual propagation and regenerative plasticity in the different budding mechanisms, and consider the putative mechanism of body repatterning in a non-embryonic scenario. We also discuss the involvement of intra-colony homeostatic processes in regulating budding potential, and the functional link between allorecognition, chimerism, and regenerative potential.
Collapse
Affiliation(s)
- Ulrich Kürn
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, Germany
| | | | | | | |
Collapse
|
10
|
Wang J, Geiger H, Rudolph KL. Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 2011; 23:532-6. [DOI: 10.1016/j.coi.2011.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
|
11
|
Abstract
Human aging is associated with bone loss leading to bone fragility and increased risk of fractures. The cellular and molecular causes of age-related bone loss are current intensive topic of investigation with the aim of identifying new approaches to abolish its negative effects on the skeleton. Age-related osteoblast dysfunction is the main cause of age-related bone loss in both men and women beyond the fifth decade and results from two groups of pathogenic mechanisms: extrinsic mechanisms that are mediated by age-related changes in bone microenvironment including changes in levels of hormones and growth factors, and intrinsic mechanisms caused by the osteoblast cellular senescence. The aim of this review is to provide a summary of the intrinsic senescence mechanisms affecting osteoblastic functions and how they can be targeted to abolish age-related osteoblastic dysfunction and bone loss associated with aging.
Collapse
Affiliation(s)
- Moustapha Kassem
- Department of Endocrinology and Metabolism, University Hospital of Odense, Odense, Denmark
| | | |
Collapse
|
12
|
Abstract
The function of adult tissue-specific stem cells declines with age, which may contribute to the physiological decline in tissue homeostasis and the increased risk of neoplasm during aging. Old stem cells can be 'rejuvenated' by environmental stimuli in some cases, raising the possibility that a subset of age-dependent stem cell changes is regulated by reversible mechanisms. Epigenetic regulators are good candidates for such mechanisms, as they provide a versatile checkpoint to mediate plastic changes in gene expression and have recently been found to control organismal longevity. Here, we review the importance of chromatin regulation in adult stem cell compartments. We particularly focus on the roles of chromatin-modifying complexes and transcription factors that directly impact chromatin in aging stem cells. Understanding the regulation of chromatin states in adult stem cells is likely to have important implications for identifying avenues to maintain the homeostatic balance between sustained function and neoplastic transformation of aging stem cells.
Collapse
Affiliation(s)
- E A Pollina
- Department of Genetics, Stanford University, CA, USA
| | | |
Collapse
|
13
|
Colmegna I, Weyand CM. Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology (Oxford) 2010; 50:252-60. [PMID: 20837497 DOI: 10.1093/rheumatology/keq298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RA is the prototypic chronic inflammatory disease, characterized by progressive articular cartilage and bone destruction. The systemic nature of RA is evidenced by the increased risk of atherosclerosis and lymphoproliferative disorders. Components of both the innate and adaptive immune system are implicated in the pathophysiology of the articular and extra-articular manifestations of the disease. A fundamental process in the onset of RA is the breakdown in self-tolerance. Accelerated ageing of immune cells (immunosenescence) appears to be a major mechanism favouring the disruption of tolerance. Telomere erosion, a hallmark of immunosenescence, is present in lymphoid (naïve and memory T cells) and myeloid (granulocytes) cells in RA. The premature ageing process also involves the haematopoietic stem and progenitor cells (CD34(+) HSPC), thus extending the RA immunopathogenesis to include early events in the shaping of the immune system. This review summarizes current concepts of HSPC ageing and its impact on immune regeneration, highlighting the phenotypic and functional similarities between elderly and RA HSPC.
Collapse
Affiliation(s)
- Inés Colmegna
- Department of Medicine, McGill University Health Center, Montreal, Canada.
| | | |
Collapse
|
14
|
Piccin D, Morshead CM. Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 2010; 3:421-5. [DOI: 10.1242/dmm.003137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our increasing understanding of resident stem cell populations in various tissues of the adult body provides promise for the development of cell-based therapies to treat trauma and disease. With the sharp rise in the aging population, the need for effective regenerative medicine strategies for the aged is more important then ever. Yet, the vast majority of research fuelling our understanding of the mechanisms that control stem cell behaviour, and their role in tissue regeneration, is conducted in young animals. Evidence collected in the last several years indicates that, although stem cells remain active into old age, changes in the stem cells and their microenvironments inhibit their regenerative potential. An understanding of both the cell-intrinsic stem cell changes, as well as concomitant changes to the stem cell niche and the systemic environment, are crucial for the development of regenerative medicine strategies that might be successful in aged patients.
Collapse
Affiliation(s)
- David Piccin
- Department of Surgery, Institute of Medical Science, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M. Morshead
- Department of Surgery, Institute of Medical Science, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
15
|
Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 2010; 11:643-69. [PMID: 20582627 DOI: 10.1007/s10522-010-9291-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/11/2010] [Indexed: 12/20/2022]
Abstract
This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4-9 cm, a generation time of 6-7 months and a life span of 2-3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Germany.
| |
Collapse
|
16
|
Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 2010; 31:191-8. [DOI: 10.1016/j.it.2010.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/02/2010] [Accepted: 02/25/2010] [Indexed: 12/28/2022]
|
17
|
Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys 2009; 55:55-79. [PMID: 19672563 DOI: 10.1007/s12013-009-9059-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 12/18/2022]
Abstract
Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.
Collapse
Affiliation(s)
- Mahin Khatami
- The National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Waterstrat A, Van Zant G. Effects of aging on hematopoietic stem and progenitor cells. Curr Opin Immunol 2009; 21:408-13. [PMID: 19500962 DOI: 10.1016/j.coi.2009.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
Although relationships between cellular and organismal aging are not well understood, several studies describe age-related changes in hematopoietic stem cells (HSCs) with functional consequences for the hematopoietic system. Importantly, aged hematopoietic stem and progenitor cells (HSPCs) differ from their younger counterparts in functional capacity, the complement of proteins on the cell surface, transcriptional activity, and genome integrity. These changes, however, are likely the result of a combination of cell-intrinsic and microenvironment-derived influences. Evolving views of the composition of the HSC compartment suggest that changes in HSCs may reflect the effects of the aging process on individual HSCs or a shift in the clonal composition of the HSC pool with age.
Collapse
Affiliation(s)
- Amanda Waterstrat
- Department of Internal Medicine-Hematology, University of Kentucky College of Medicine, Lexington, KY 40536-0093, USA.
| | | |
Collapse
|
19
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|