1
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
2
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Narayan VP, Wilson AJ, Chenoweth SF. Genetic and social contributions to sex differences in lifespan in Drosophila serrata. J Evol Biol 2022; 35:657-663. [PMID: 35290690 PMCID: PMC9314142 DOI: 10.1111/jeb.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
Sex differences in lifespan remain an intriguing puzzle in evolutionary biology. While explanations range from sex differences in selection to sex differences in the expression of recessive lifespan‐altering mutations (via X‐linkage), little consensus has been reached. One unresolved issue is the extent to which genetic influences on lifespan dimorphism are modulated by the environment. For example, studies have shown that sex differences in lifespan can either increase or decrease depending upon the social environment. Here, we took an experimental approach, manipulating multiple axes of the social environment across inbred long‐ and short‐lived genotypes and their reciprocal F1s in the fly Drosophila serrata. Our results reveal strong genetic effects and subtle yet significant genotype‐by‐environment interactions for male and female lifespan, specifically due to both population density and mating status. Further, our data do not support the idea that unconditional expression of deleterious X‐linked recessive alleles in heterogametic males accounts for lower male lifespan.
Collapse
Affiliation(s)
- Vikram P Narayan
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia.,College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Alastair J Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
4
|
Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021; 22:145-164. [PMID: 33420860 PMCID: PMC7794644 DOI: 10.1007/s10522-020-09908-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders.
Collapse
|
5
|
Komljenovic A, Li H, Sorrentino V, Kutalik Z, Auwerx J, Robinson-Rechavi M. Cross-species functional modules link proteostasis to human normal aging. PLoS Comput Biol 2019; 15:e1007162. [PMID: 31269015 PMCID: PMC6634426 DOI: 10.1371/journal.pcbi.1007162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/16/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved nature of the few well-known anti-aging interventions that affect lifespan, such as caloric restriction, suggests that aging-related research in model organisms is directly relevant to human aging. Since human lifespan is a complex trait, a systems-level approach will contribute to a more comprehensive understanding of the underlying aging landscape. Here, we integrate evolutionary and functional information of normal aging across human and model organisms at three levels: gene-level, process-level, and network-level. We identify evolutionarily conserved modules of normal aging across diverse taxa, and notably show proteostasis to be conserved in normal aging. Additionally, we find that mechanisms related to protein quality control network are enriched for genes harboring genetic variants associated with 22 age-related human traits and associated to caloric restriction. These results demonstrate that a systems-level approach, combined with evolutionary conservation, allows the detection of candidate aging genes and pathways relevant to human normal aging.
Collapse
Affiliation(s)
- Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | | | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
6
|
Larval crowding results in hormesis-like effects on longevity in Drosophila: timing of eclosion as a model. Biogerontology 2018; 20:191-201. [PMID: 30456589 DOI: 10.1007/s10522-018-9786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023]
Abstract
There is increasing evidence that stress during development can affect adult-life health status and longevity. In the present study, we examined life span (LS), fly weight, fecundity and expression levels of longevity-associated genes (Hsp70, InR, dSir2, dTOR and dFOXO) in adult Drosophila melanogaster flies reared in normal [low density (LD), ~ 300-400 eggs per jar] or crowded [high density (HD), more than 3000 eggs per jar] conditions by using the order (day) of emergence as an index of the developmental duration (HD1-5 groups). Developmental time showed a significant trend to increase while weight showed a significant trend to decrease with increasing the timing of emergence. In both males and females eclosed during first 2 days in HD conditions (HD1 and HD2 groups), both mean and maximum LSs were significantly increased in comparison to LD group. In males, mean LS was increased by 24.0% and 23.5% in HD1 and HD2 groups, respectively. In females, corresponding increments in mean LS were 23.8% (HD1 group) and 29.3% (HD2 group). In HD groups, a strong negative association with developmental time has been found for both male and female mean and male maximum LSs; no association with growth rate was observed for female maximum LS. The female reproductive activity (fecundity) tended to decrease with subsequent days of eclosion. In HD groups, the levels of expression of all studied longevity-associated genes tended to increase with the timing of eclosion in males; no differences were observed in females. On the basis of findings obtained, it can be assumed that the development in conditions of larval overpopulation (if not too extended) could trigger hormetic response thereby extending the longevity. Further studies are, however, needed to confirm this assumption.
Collapse
|
7
|
Oberacker T, Bajorat J, Ziola S, Schroeder A, Röth D, Kastl L, Edgar BA, Wagner W, Gülow K, Krammer PH. Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett 2018; 592:2297-2307. [PMID: 29897613 PMCID: PMC6099297 DOI: 10.1002/1873-3468.13156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
The "free radical theory of aging" suggests that reactive oxygen species (ROS) are responsible for age-related loss of cellular functions and, therefore, represent the main cause of aging. Redox regulation by thioredoxin-1 (TRX) plays a crucial role in responses to oxidative stress. We show that thioredoxin-interacting protein (TXNIP), a negative regulator of TRX, plays a major role in maintaining the redox status and, thereby, influences aging processes. This role of TXNIP is conserved from flies to humans. Age-dependent upregulation of TXNIP results in decreased stress resistance to oxidative challenge in primary human cells and in Drosophila. Experimental overexpression of TXNIP in flies shortens lifespan due to elevated oxidative DNA damage, whereas downregulation of TXNIP enhances oxidative stress resistance and extends lifespan.
Collapse
Affiliation(s)
- Tina Oberacker
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jörg Bajorat
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sabine Ziola
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anne Schroeder
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel Röth
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Lena Kastl
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bruce A. Edgar
- German Cancer Research Center (DKFZ)Center for Molecular BiologyUniversity of Heidelberg AllianceGermany
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUTUSA
| | - Wolfgang Wagner
- Department for Stem Cell Biology and Cellular EngineeringHelmholtz‐Institute for Biomedical EngineeringRWTH Aachen University Medical SchoolGermany
| | - Karsten Gülow
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
- Internal Medicine IUniversity Hospital RegensburgGermany
| | - Peter H. Krammer
- Tumor Immunology Program (D030)German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
8
|
Understanding the link between sexual selection, sexual conflict and aging using crickets as a model. Exp Gerontol 2015; 71:4-13. [DOI: 10.1016/j.exger.2015.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/22/2023]
|